
Schema Inference onWikidata

Master’s Thesis of

Lucas Werkmeister

at the Department of Informatics
Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Reussner
Second reviewer: Prof. Sack
Advisor: Dr. Koutraki

16. April 2018 – 15. October 2018

This work is licensed under a Creative Commons
“Attribution 4.0 International” license.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, 2018-10-15

. .
(Lucas Werkmeister)

Abstract

Wikidata, the free knowledge base in the Wikimedia movement, is used by various Wiki-
media projects and third parties to provide machine-readable information and data. Its
data quality is managed and monitored by its community using several quality control
mechanisms, recently including formal schemas in the Shape Expressions language. How-
ever, larger schemas can be tedious to write, making automatic inference of schemas from
a set of exemplary Items an attractive prospect.

This thesis investigates this option by updating and adapting the RDF2Graph program
to infer schemas from a set of Wikidata Items, and providing a web-based tool which
makes this process available to the Wikidata community. Though the resulting schemas
are usually not �t for direct validation, they can still be useful as a form of describing the
layout of an area of Wikidata’s data model, a way to notice potential issues in the source
data, or a basis for a manually curated schema.

i

Zusammenfassung

Wikidata, die freie Wissensdatenbank in der Wikimedia-Bewegung, wird von verschiede-
nen Wikimedia- und anderen Projekten als Quelle für maschinenlesbare Informationen
und Daten verwendet. Die Datenqualität wird durch die Wikidata-Community verwaltet
und überwacht, wobei verschiedene Mechanismen zur Qualitätskontrolle zum Einsatz
kommen, in letzter Zeit auch formale Schemata in der Shape Expressions-Sprache. Aller-
dings ist es langwierig, größere Schemata zu schreiben, was automatischen Rückschluss
solcher Schemata aus einem Satz beispielhafter Datenobjekte attraktiv macht.

Diese Arbeit untersucht diese Option, indem das RDF2Graph-Programm aktualisiert
und angepasst wird, um Schemata aus einem Satz von Wikidata-Datenobjekten rückzu-
schließen, und durch das Angebot eines webbasierten Werkzeugs, welches diesen Vorgang
der Wikidata-Community zugänglich macht. Obwohl die resultierenden Schemata meist
nicht für direkte Validierung geeignet sind, können sie immer noch als Beschreibung eines
Bereichs des Wikidata-Datenmodells, als Mittel, mögliche Probleme in den Eingabedaten
zu bemerken, oder als Basis für manuell betreute Schemata nützlich sein.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1

2. Background 3
2.1. RDF . 3
2.2. Wikidata . 6
2.3. Shape Expressions . 10
2.4. RDF2Graph . 11
2.5. Wikimedia Toolforge . 16

3. Applying RDF2Graph to Wikidata 17
3.1. General RDF2Graph Updates . 17
3.2. Wikidata Support . 18

3.2.1. Overall process . 18
3.2.2. Type predicates . 20
3.2.3. Data reduction . 20
3.2.4. Full type hierarchy . 21
3.2.5. Simpli�cation . 21

3.3. Support for Cyclic Type Hierarchies . 21
3.3.1. GetAllChildren . 22
3.3.2. Counting instances . 22
3.3.3. Simpli�cation steps 3 and 4 . 23
3.3.4. Node distances . 23
3.3.5. Parent check . 24

3.4. Schema Reduction . 24
3.5. Depth Limits in Validation . 25

4. TheWikidata Shape Expressions Inference Tool 27
4.1. General Design and Implementation . 27
4.2. Schema Reading Utilities . 29
4.3. Wikimedia Toolforge Support . 30

5. Evaluation 31
5.1. Schema Quality . 31
5.2. Manual Schema Extraction . 34
5.3. Duration of the Inference Process . 38

v

Contents

6. Conclusion 41

Bibliography 43

A. Appendix 49
A.1. A Note on Orthography . 49
A.2. Results of Validation With Depth Limit 49
A.3. Job Execution Times . 53

vi

List of Figures

2.1. RDF graph for President Franklin D. Roosevelt and his dog 4
2.2. Two screenshots of the same Item viewed in di�erent languages 8
2.2. Two screenshots of the same Item viewed in di�erent languages 9

3.1. Overview of the process . 19

4.1. Index page of the Wikidata Shape Expressions Inference tool 28
4.2. Detail page for job #37 . 28
4.3. Screenshots showing the e�ects of syntax highlighting and the client-side

script . 30

A.1. Job execution time over number of Items selected by the query 55
A.2. Job execution time over number of triples in the input data set 56
A.3. Job execution time over number of wdt:P31 triples in the input data set . 57
A.4. Job execution time over number of distinct classes in the input data set . 58

vii

https://tools.wmflabs.org/wd-shex-infer/job/37

List of Listings

1. RDF graph for President Franklin D. Roosevelt and his dog 5
2. Example schema for creative works and their authors 10
3. Simpli�cation step 2 . 13
4. Simpli�cation step 3 . 14
5. Simpli�cation step 4 . 15
6. Simpli�cation, with class relations . 16

7. Excerpt of a schema inferred from 50 members of the 13th Riigikogu . . 32
8. Two schemas manually extracted from automatically inferred ones . . . 37
9. GNU AWK script to count the number of wdt:P31 triples in the input . . 40
10. GNU AWK script to count distinct classes in the input 40

ix

List of Tables

A.1. Results when validating the Item “Titanic” (Q44578) against the shape for
the class “�lm” (Q11424) from a schema inferred from the set of �lms that
won ten or more Oscars (job #29) . 50

A.2. Results when validating the Item “Douglas Adams” (Q42) against the shape
for the class “human” (Q5) from a schema inferred from the set of �lms
that won ten or more Oscars (job #29) 50

A.3. Results when validating the Item “Douglas Adams” (Q42) against the shape
for the class “human” (Q5) from a schema inferred from the members of
the 13th Riigikogu (the Estonian parliament; job #30) 51

A.4. Results when validating the Item “Mailis Reps” (Q449851) against the shape
for the class “human” (Q5) from a schema inferred from the members of
the 13th Riigikogu (job #30) . 51

A.5. Results when validating the Item “United States of America” (Q30) against
the shape for the class “sovereign state” (Q3624078) from a schema inferred
from a set of Items for bus stops (job #15) 52

xi

http://www.wikidata.org/entity/Q44578
http://www.wikidata.org/entity/Q11424
https://tools.wmflabs.org/wd-shex-infer/job/29
http://www.wikidata.org/entity/Q42
http://www.wikidata.org/entity/Q5
https://tools.wmflabs.org/wd-shex-infer/job/29
http://www.wikidata.org/entity/Q42
http://www.wikidata.org/entity/Q5
https://tools.wmflabs.org/wd-shex-infer/job/30
http://www.wikidata.org/entity/Q449851
http://www.wikidata.org/entity/Q5
https://tools.wmflabs.org/wd-shex-infer/job/30
http://www.wikidata.org/entity/Q30
http://www.wikidata.org/entity/Q3624078
https://tools.wmflabs.org/wd-shex-infer/job/15

1. Introduction

As Wikidata, the free knowledge base in the Wikimedia movement, continues to grow in
volume and scope [7] and is used by more and more Wikimedia projects and third parties,
its data quality has been identi�ed as one of the most important areas of development
in the future [10]: in order for Wikidata to be useful, its data must be trustworthy and
available in a consistent format. Unchecked vandalism discourages data reuse, while
inconsistent data models make it signi�cantly more di�cult or even impossible.

To combat these problems, several quality control mechanisms are used on Wikidata.
Recently, editors have begun exploring the use of Shape Expressions as another quality
control mechanism to use, forming the WikiProject ShEx. Compared to the more estab-
lished, Wikidata-speci�c quality constraints system, Shape Expressions are more powerful
and expressive, and are also not speci�c to Wikidata alone. However, schemas for Shape
Expressions are tedious to write by hand.

Automatically inferring schemas from Wikidata Items promises to simplify the schema
authoring process: instead of manually putting together the schema, describing shapes for
di�erent classes of Items, one simply selects a set of Items, and a schema is automatically
generated based on the data about these Items. If the selected Items have been carefully
edited to conform to a pre-existing schema, perhaps described informally or only present in
the minds of the editors, then the result may be a formalization of that schema; alternatively,
applying the same process to a less curated set of input Items may result in a coherent
summary of the current schema of those Items and possibly even demonstrate problems
in the input data.

This thesis investigates the usefulness and applicability of automatically inferring
schemas for Wikidata from sets of exemplary Items. It builds on the existing RDF2Graph
[3] program, updating and adapting it to support Wikidata and automating the whole
inference process. This is then made available to the whole Wikidata community by
incorporating it into a web-based tool.

The remainder of this thesis is organized as follows. Chapter 2 explains concepts that
are required to understand the thesis. Chapter 3 describes general updates for RDF2Graph
as well as changes that were made to add Wikidata support to it. Chapter 4 introduces the
Wikidata Shape Expressions Inference tool and describes its design and implementation.
Chapter 5 then evaluates the usefulness of the tool and the resulting schemas. Finally,
chapter 6 summarizes the results and concludes the main text of the thesis. These are
followed by a Bibliography listing sources, a Glossary with short de�nitions of most
acronyms and terms used in this thesis, and an Appendix with some ancillary content that
does not belong in the main text.

This work is licensed under a Creative Commons “Attribution 4.0 International” license.
Its source code is available in the repository at https://github.com/lucaswerkmeister/
master-thesis.

1

https://www.wikidata.org/wiki/Wikidata:WikiProject_ShEx
https://creativecommons.org/licenses/by/4.0/deed.en
https://github.com/lucaswerkmeister/master-thesis
https://github.com/lucaswerkmeister/master-thesis

2. Background

This chapter provides background information on several concepts that are important to the
rest of this thesis. The sections below are not intended to be comprehensive introductions
to the respective topics, but focus on the aspects that are necessary to understand the thesis,
omitting parts that are unnecessary or distracting in this context. Further information,
including full introductions to most topics covered here, can be found in the works listed
in the bibliography.

2.1. RDF

Resource Description Framework (RDF) [6] is a framework for describing and working
with Linked Data, developed by the RDF Working Group under the umbrella of the
World Wide Web Consortium (W3C). In RDF, information is arranged in subject-predicate-
object triples, such as “<Alan Turing> <is a> <human>” or “<Lima> <was founded in>
<18 January 1535>”. All three elements of a triple are typically resources, identi�ed by
an Internationalized Resource Identi�er (IRI) like http://example.com/Alan_Turing or
http://www.wikidata.org/entity/Q5, but the object of a triple can also be some other
kind of value, such as a textual, numerical or other literal (e. g. the date literal “18 January
1535” above). A collection of such triples forms a directed, labeled graph, where the triples
describe individual edges and the nodes are the subjects and objects of the triples: triples
with the same subject constitute di�erent outgoing arcs from the same node. This graph
can then be queried using the SPARQL Protocol and RDF Query Language (SPARQL) [15].
For a more detailed introduction to RDF and related technologies, see the RDF 1.1 Primer
[13].

To improve readability, the IRIs identifying a resource are usually abbreviated using pre-
�xes. For example, once the pre�x ex: has been de�ned to mean http://shex.example/,
the IRIs http://shex.example/Person and http://shex.example/dateOfBirth can be
abbreviated as ex:Person and ex:dateOfBirth. (This “example” pre�x, also used be-
low for other examples, follows the naming conventions of schema.org [12], in that
types (ex:Person) and entities (ex:JohnDoe) are in upper camel case while predicates
(ex:dateOfBirth) are in lower camel case.)

While RDF can be used with any resource IRIs, one of its strengths is the ability to reuse
the same vocabularies (e�ectively, sets of resources) in a variety of di�erent graphs. For
example, many graphs use the same predicate, rdfs:label, to link a resource to a human-
readable version of its name (its label); a tool based on RDF can thus o�er human-readable
names for resources from all these graphs without requiring any speci�c knowledge
about them, and the graphs are more useful when used in combination. One common
vocabulary is RDF Schema (RDFS) [4], which among others provides two important

3

http://example.com/Alan_Turing
http://www.wikidata.org/entity/Q5
http://shex.example/
http://shex.example/Person
http://shex.example/dateOfBirth

2. Background

ex:Creature

ex:Human ex:Dog

ex:FDR ex:Fala

1882-01-30
(xsd:date)

Franklin Delano Roosevelt
(xsd:string)

Fala
(xsd:string)

1940-04-07
(xsd:date)

rdfs:subClassOf rdfs:subClassOf

rdf:type rdf:type
ex:pet

ex:owner
ex:dateOfBirth

rdfs:label

rdfs:label ex:dateOfBirth

Figure 2.1.: RDF graph for President Franklin D. Roosevelt and his dog

predicates: rdf:type and rdfs:subClassOf. rdf:type connects a resource to its class, and
rdfs:subClassOf connects a class to its parent class. (The rdf: and rdfs: pre�xes are
both part of RDF Schema; the distinction between them is “a somewhat annoying historical
artifact” [13] with no real signi�cance today.) Another commonly used vocabulary is
XML Schema De�nition (XSD) [8], which provides several basic datatypes: for example,
xsd:string is the datatype for a simple text string (language-agnostic), and xsd:date and
xsd:dateTime are used to notate points in time.

Figure 2.1 shows a small example RDF graph for President Franklin D. Roosevelt and
his pet dog, Fala. The nodes with rounded corners represent resources, whereas the
nodes with pointed corners are literals, with their datatype given below their value in
parentheses. Each arrow denotes a triple, pointing from the subject to the object, with the
predicate written next to the arrow. The graph describes the name and date of birth of
the president and his dog, their ownership relation, and their types, including subtype
relations: Franklin D. Roosevelt is a person, Fala is a dog, and both persons and dogs are
kinds of creatures.

The same graph may also be written textually in several syntaxes. The simplest RDF
syntax is N-Triples [14], which lists triples one per line, each terminated with a period.
IRIs are enclosed in angle brackets, and literals are enclosed in double quotes, optionally
followed by two carets and their datatype (otherwise the implied datatype is xsd:string).
The N-Triples representation of the same graph as in �g. 2.1 is presented in listing 1.

4

2.1. RDF

<
h
t
t
p
:
/
/
s
h
e
x
.
e
x
a
m
p
l
e
/
F
D
R
>
<
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
1
9
9
9
/
0
2
/
2
2
-
r
d
f
-
s
y
n
t
a
x
-
n
s
#
t
y
p
e
>
<
h
t
t
p
:
/
/
s
h
e
x
.
e
x
a
m
p
l
e
/
H
u
m
a
n
>
.

<
h
t
t
p
:
/
/
s
h
e
x
.
e
x
a
m
p
l
e
/
F
D
R
>
<
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
2
0
0
0
/
0
1
/
r
d
f
-
s
c
h
e
m
a
#
l
a
b
e
l
>
"
F
r
a
n
k
l
i
n
D
e
l
a
n
o
R
o
o
s
e
v
e
l
t
"
.

<
h
t
t
p
:
/
/
s
h
e
x
.
e
x
a
m
p
l
e
/
F
D
R
>
<
h
t
t
p
:
/
/
s
h
e
x
.
e
x
a
m
p
l
e
/
d
a
t
e
O
f
B
i
r
t
h
>
"
1
8
8
2
-
0
1
-
3
0
"
^
^
<
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
2
0
0
1
/
X
M
L
S
c
h
e
m
a
#
d
a
t
e
>
.

<
h
t
t
p
:
/
/
s
h
e
x
.
e
x
a
m
p
l
e
/
F
D
R
>
<
h
t
t
p
:
/
/
s
h
e
x
.
e
x
a
m
p
l
e
/
p
e
t
>
<
h
t
t
p
:
/
/
s
h
e
x
.
e
x
a
m
p
l
e
/
F
a
l
a
>
.

<
h
t
t
p
:
/
/
s
h
e
x
.
e
x
a
m
p
l
e
/
F
a
l
a
>
<
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
1
9
9
9
/
0
2
/
2
2
-
r
d
f
-
s
y
n
t
a
x
-
n
s
#
t
y
p
e
>
<
h
t
t
p
:
/
/
s
h
e
x
.
e
x
a
m
p
l
e
/
D
o
g
>
.

<
h
t
t
p
:
/
/
s
h
e
x
.
e
x
a
m
p
l
e
/
F
a
l
a
>
<
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
2
0
0
0
/
0
1
/
r
d
f
-
s
c
h
e
m
a
#
l
a
b
e
l
>
"
F
a
l
a
"
.

<
h
t
t
p
:
/
/
s
h
e
x
.
e
x
a
m
p
l
e
/
F
a
l
a
>
<
h
t
t
p
:
/
/
s
h
e
x
.
e
x
a
m
p
l
e
/
d
a
t
e
O
f
B
i
r
t
h
>
"
1
9
4
0
-
0
4
-
0
7
"
^
^
<
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
2
0
0
1
/
X
M
L
S
c
h
e
m
a
#
d
a
t
e
>
.

<
h
t
t
p
:
/
/
s
h
e
x
.
e
x
a
m
p
l
e
/
F
a
l
a
>
<
h
t
t
p
:
/
/
s
h
e
x
.
e
x
a
m
p
l
e
/
o
w
n
e
r
>
<
h
t
t
p
:
/
/
s
h
e
x
.
e
x
a
m
p
l
e
/
F
D
R
>
.

<
h
t
t
p
:
/
/
s
h
e
x
.
e
x
a
m
p
l
e
/
H
u
m
a
n
>
<
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
2
0
0
0
/
0
1
/
r
d
f
-
s
c
h
e
m
a
#
s
u
b
C
l
a
s
s
O
f
>
<
h
t
t
p
:
/
/
s
h
e
x
.
e
x
a
m
p
l
e
/
C
r
e
a
t
u
r
e
>
.

<
h
t
t
p
:
/
/
s
h
e
x
.
e
x
a
m
p
l
e
/
D
o
g
>
<
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
2
0
0
0
/
0
1
/
r
d
f
-
s
c
h
e
m
a
#
s
u
b
C
l
a
s
s
O
f
>
<
h
t
t
p
:
/
/
s
h
e
x
.
e
x
a
m
p
l
e
/
C
r
e
a
t
u
r
e
>
.

Li
st

in
g

1:
RD

F
gr

ap
h

fo
rP

re
si

de
nt

Fr
an

kl
in

D
.R

oo
se

ve
lt

an
d

hi
sd

og

5

2. Background

2.2. Wikidata

Wikidata [17] is a free knowledge base and part of the Wikimedia family of projects,
the most famous of which is Wikipedia, the free encyclopedia. Its contents are created,
maintained and managed by the Wikidata community, most of whose members are vol-
unteers, as well as the members of other Wikimedia projects, e. g. Wikipedia. Anyone
can contribute to Wikidata, but the community ensures the quality of the contents with
various quality control mechanisms. Providing another such mechanism is part of the
motivation for this thesis.

Information on Wikidata is collected in Items, which represent things or concepts. There
are Items for individual persons, for cities, states, geographical features, for organizations
and corporations. There are also Items for books, �lms, newspapers, journals, scienti�c
articles, for abstract concepts, phenomena, emotions, philosophical movements, political
orientations. And there are even Items for conceptual hierarchies, parent classes, biological
taxa, and for �ctional characters, places, or other entities. Any thing or concept can be
represented by an Item, and while Wikidata will never cover everything that exists in the
world, at over �fty million Items and counting, it already provides a wealth of content.

All of these Items follow the same structure. They are identi�ed by their Item ID, a
consecutive number pre�xed with the letter “Q” (e. g. Q188709 for Beethoven’s Symphony
No. 5). They can have a Label, a Description, and Aliases, each in various languages: for
example, the Item Q7251 is labeled “Alan Turing” in English but «Алан Тьюринг» in
Russian; is described as a “British mathematician, logician, cryptanalyst, and computer
scientist” in English; and may also be found under search aliases like “Alan M. Turing”,
“Alan Mathison Turing” or simply “Turing”. Items also have a set of Sitelinks (links to
pages about the same concept in various other Wikimedia projects – Wikipedia articles,
Wikiquote pages, Wikimedia Commons galleries, etc.), and most importantly, a set of
Statements.

The Statements are where most of the information in Wikidata is stored. They consist
of a Property, such as “place of birth” or “author” or “population”, and a value, which can
be a reference to another Item, a quantity, a point in time, a piece of text, or a few other
possible types. A Statement can also have Quali�ers (further property-value pairs, e. g.
clarifying when or where the statement is valid) and References (sets of property-value
pairs, listing sources for the Statement), but those are mostly ignored in the context of
this thesis. Properties are also identi�ed by an ID, their Property ID (pre�xed with the
letter “P” instead of “Q”), and can also have Labels, Descriptions and Aliases in di�erent
languages: for example, P31 is labeled “instance of” in English and „ist ein(e)“ in German.
The Labels and Descriptions are necessary to understand the meaning of Statements, but
they are not themselves part of the Statements: Statements only list references to Property
and Item IDs, making most of the information in Wikidata language-agnostic [5].

Figure 2.2 shows two screenshots of the same Wikidata Item, “Montblanc” (Q761735),
viewed in di�erent languages, both as of Wikidata revision 704641959. The page structure
is the same regardless of language: �rst, there is a heading, showing the Label in the
current language and the Item ID; below it on the left side is the “term box”, listing Labels,
Descriptions and Aliases in several languages relevant to the user; below that is the list
of Statements; to the right are lists of Sitelinks for di�erent Wikimedia projects. The

6

http://www.wikidata.org/entity/Q188709
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P31
http://www.wikidata.org/entity/Q761735
https://www.wikidata.org/wiki/Special:PermanentLink/704641959

2.2. Wikidata

screenshots are truncated (the page has also been lightly edited for the screenshots to
remove some spacing and a few less relevant page elements) and do not show the full list
of Statements, but the Statements pictured are:

• A Statement for the Property P31, where the value is an Item, Q33146843.

• A Statement for the Property P18, where the value is a media �le on Wikimedia Com-
mons. Image credit: Mariarosafg (https://commons.wikimedia.org/wiki/File:
Ciutat_de_Montblanc.jpg), “Ciutat de Montblanc”, https://creativecommons.org/
licenses/by-sa/3.0/legalcode

• Two Statements for the Property P1448, where the values are monolingual text
strings. Both Statements also have Quali�ers and References.

In �g. 2.2a, the Item is viewed as an anonymous user in the default English language
(German is shown as a second language in the term box because the request was made
from a German IP address; logged in users can con�gure which languages they want to
see here). In �g. 2.2b, the Item is viewed as an anonymous user, explicitly requested in
the Catalan language: notice that all referenced Properties and Items are now shown with
di�erent Labels.

There is no kind of schema inherent to the Wikidata data model. Any Property can be
used on any Item: nothing in the software stops one from adding, say, a “date of birth”
Statement to an Item for a lake, or a “parent taxon” Statement to an Item for a movie
teaser poster. The community has several ways to describe schemas to varying degrees of
formality (such as Property lists on WikiProject pages or the property constraints system),
but they are all realized by community consensus, not enforced by the software behind
Wikidata. The great �exibility which this lends to the community is considered to be one of
Wikidata’s greatest strengths [16], and though the use of Shape Expressions on Wikidata
will provide another, highly formal way to describe schemas, there is no intention to
change this fundamental operating principle of Wikidata.

Wikidata’s data model, as described above, is not directly related to RDF. However, to
enable usage of RDF technologies and interoperation with RDF-based data sets, Wikidata’s
data is exported to RDF: the data about any Item can be downloaded in various RDF
formats through a Linked Data interface, and a full, up-to-date RDF export of Wikidata is
available in the Wikidata Query Service (WDQS), a SPARQL endpoint to which anyone
may submit queries. In the Wikidata RDF exports, items use the pre�x wd: and properties
in a statement use the pre�x wdt:. For example, the statement

“Alan Turing” (Q7251)’s “place of birth” (P19) was “Maida Vale” (Q122744)

is represented in RDF as the triple wd:Q7251 wdt:P19 wd:P12274.

7

http://www.wikidata.org/entity/P31
http://www.wikidata.org/entity/Q33146843
http://www.wikidata.org/entity/P18
https://commons.wikimedia.org/wiki/User:Mariarosafg
https://commons.wikimedia.org/wiki/File:Ciutat_de_Montblanc.jpg
https://commons.wikimedia.org/wiki/File:Ciutat_de_Montblanc.jpg
https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://creativecommons.org/licenses/by-sa/3.0/legalcode
http://www.wikidata.org/entity/P1448
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P19
http://www.wikidata.org/entity/Q122744

2. Background

(a) The Item viewed as an anonymous user in the default English language

Figure 2.2.: Two screenshots of the same Item viewed in di�erent languages

8

2.2. Wikidata

(b) The Item viewed as an anonymous user, explicitly requested in the Catalan language

Figure 2.2.: Two screenshots of the same Item viewed in di�erent languages

9

2. Background

2.3. Shape Expressions

Shape Expressions (ShEx) [11] is a standard for describing data shapes within an RDF
graph, developed by the ShEx Community Group under the umbrella of the W3C. A ShEx
schema consists of a number of shapes, each of which describes the layout of an RDF
resource, called the focus node. The notation for ShEx schemas used in this thesis is ShEx
Compact Syntax (ShExC), and while a full introduction to ShEx and ShExC is beyond the
scope of this thesis, the relevant elements are described below. For a more complete and
detailed introduction, see the ShEx Primer [1].

In ShExC, a shape de�nition begins with the shape’s name (an IRI) and is followed
by a block of triple constraints enclosed in curly braces ({}). The triple constraints are
separated by semicolons (;) and place restrictions on triples with the focus node as the
subject and a certain predicate: a triple constraint consists of the IRI for the predicate and
then a constraint on the object (the value). The value constraint can require the value
to be a literal with a certain datatype, expressed directly via the datatype’s IRI, or it can
require the value to be a resource matching another shape, indicated by that shape’s name
(an IRI) following an @ symbol. The value constraint may be followed by a cardinality
for the triple constraint: instead of the default cardinality “must occur exactly once”, the
symbol ? may be appended to signify “zero or one times” (an optional triple constraint), *
means “zero or more” (any number of triples with this predicate may occur, but if they
do occur, their objects must still match the value constraint), and + means “one or more”.
Multiple possible triple constraints for the same predicate can be expressed by grouping
them inside parentheses (()), separated by vertical bars (|).

ex:CreativeWork {

ex:title rdf:langString;

(

ex:author @ex:Person+ |

ex:author @ex:Organization

);

ex:cites @ex:CreativeWork*;

ex:publicationDate xsd:dateTime?

}

ex:Person {

ex:name rdf:langString;

ex:dateOfBirth xsd:dateTime?

}

ex:Organization {

ex:name rdf:langString+

}

Listing 2: Example schema for creative works and their authors

10

2.4. RDF2Graph

For example, the schema in listing 2 de�nes three shapes for creative works and their
authors. It describes a creative work as having a title, a string in a certain language; being
written by one or more persons or an organization; citing any number of other creative
works; and optionally having been published on a certain date and time. (Scholarly articles
would typically have human authors, cite multiple works and have a publication date,
whereas a documentation page could be attributed to an organization as a whole and
have no signi�cant citations or publication date.) A person in this schema has exactly one
name in one language (which is not generally true [9], but violations of this should be rare
enough that they are worth investigating as potential errors) and may have a date of birth,
if known. An organization does not have any properties other than at least one name (it
may have several, e. g. in di�erent languages or jurisdictions).

Full examples of data sets matching or violating this schema in some way are beyond
the scope of this section, but reasons why a node may not match one of the shapes in
listing 2 include:

• A creative work is missing a title.

• A person is missing a name.

• An organization has a name which is a plain string not tagged with a language code.

• A creative work is authored by more than one organization, all of which have
more than one name. (Organizations with a single name are indistinguishable from
persons as far as this schema is concerned.)

• A creative work cites a work without a title.

• A creative work was authored by a person whose date of birth is a numeric literal.

• A creative work cites a work which cites a work which does not have any authors.

As the last examples show, a node may fail to match a shape not just because of that
node’s data, but also because of the data of nodes that the node links to, directly or
indirectly: in the last example, the chain of citations between the original focus node and
the work that is missing authors can be arbitrarily long.

By default, ShEx shapes are not “closed”: the graph may contain additional triples with
the focus node as the subject whose predicates do not match any of the triple constraints
in the shape. For example, an organization with an ex:dateOfIncorporation would still
match the ex:Organization shape in listing 2 even though that schema does not mention an
ex:dateOfIncorporation predicate anywhere. (ShEx also supports closed shapes, where
this would be a violation, but they are never used in the context of this thesis.)

2.4. RDF2Graph
RDF2Graph [3] is a tool to automatically determine the structure of an RDF graph and
export it as a ShEx schema (other output formats are also supported). It relies heavily on

11

2. Background

the type information of each node and the class hierarchy in the graph, determining the
valid predicates and their value types and cardinalities for each type in the graph. There is
also an optional step to simplify the resulting schema.

To discover the structure of an RDF graph, RDF2Graph runs a set of queries against a
SPARQL endpoint serving that graph. (This can be a local server, perhaps simply based on
a single �le containing the graph, or a remote server.) It enumerates all the classes that
occur in the graph and then collects all the predicates that are used on instances of each
class. For each predicate of each class, it then gets the types referenced in the values for
those predicates (usually the classes of the referenced nodes, but values can also be literals
or external references), as well as forward and reverse multiplicity for each such type link.
All this information is stored in a separate RDF graph private to RDF2Graph.

If the simpli�cation step is enabled, RDF2Graph will afterwards apply some transfor-
mations to the structure based on the hierarchy of the classes involved, which happens
in several steps. The following description uses the same step numbers as [3], but elides
several steps which are mostly implementation details, which is why the step numbers are
not consecutive here. See [3] and the RDF2Graph source code for the full description. (In
the source code, the steps are counted as sub-steps of the general step 7.4 “simpli�cation”:
for example, step 2 is implemented under a code comment for “7.4.2”.)

In step 2, all predicates from child classes are copied to parent classes. For example, in
listing 3, the ex:WebResource and ex:CreativeWork classes are initially empty but then
inherit several predicates from their child classes. (The . in the ex:url value constraint
means “any value”.)

Step 3 removes predicates which are only found in a single subclass from the parent
class again. In the example from listing 3, the ex:cites and ex:url predicates will be
removed from the ex:CreativeWork shape because they are only found in one subclass
(ex:ScholarlyArticle and ex:WebResource, respectively), while the other predicates will
be kept. In the ex:WebResource shape itself, all predicates will be kept because they occur
in both subclasses, ex:BlogPost and ex:DocumentationPage. See listing 4 for the result.

After that, in step 4 all references which are still found in a parent class are removed
from the child classes, where they are now redundant. In listing 5, this mostly clears the
schema: most predicates are found in ex:CreativeWork, and only ex:WebResource retains
another predicate, ex:url. Note that this step was later disabled, see section 3.1.

Step 2 also merges references to parent classes, and the other steps take this into account
by respecting subclass relations as well. For example, consider the schema in listing 6.
Initially, it states that scholarly articles only cite other scholarly articles, and web resources
only cite other web resources; after simpli�cation, it states that creative works cite other
creative works of any kind: the references to ex:ScholarlyArticle and ex:WebResource

were merged while copying the ex:cites predicate into the ex:CreativeWork parent class,
and afterwards the individual predicates were removed from the child classes because
they are covered by the merged reference in the parent class.

At this point, the information which RDF2Graph extracted is available in a private RDF
graph. From there, it can be exported into various formats by di�erent exporters. The ShEx
exporter loads parts of these results into a temporary RDF database of its own, applies
some transformations to them via SPARQL, converts them to JSON-LD, further transforms
the JSON, and �nally exports the result into ShExC text via the Jade template engine.

12

2.4. RDF2Graph

ex:CreativeWork {}

ex:ScholarlyArticle

EXTENDS ex:CreativeWork {

ex:title rdf:langString;

ex:author @ex:Person+;

ex:cites @ex:CreativeWork+;

}

ex:WebResource

EXTENDS ex:CreativeWork {}

ex:BlogPost

EXTENDS ex:WebResource {

ex:url .;

ex:title rdf:langString;

(

ex:author @ex:Person |

ex:author @ex:Organization

);

}

ex:DocumentationPage

EXTENDS ex:BlogPost {

ex:url .;

ex:title rdf:langString;

ex:author @ex:Organization;

}

(a) Before step 2

ex:CreativeWork {

ex:url .;

ex:title rdf:langString;

(

ex:author @ex:Person+ |

ex:author @ex:Organization

);

ex:cites @ex:CreativeWork+;

}

ex:ScholarlyArticle

EXTENDS ex:CreativeWork {

ex:title rdf:langString;

ex:author @ex:Person+;

ex:cites @ex:CreativeWork+;

}

ex:WebResource

EXTENDS ex:CreativeWork {

ex:url .;

ex:title rdf:langString;

(

ex:author @ex:Person |

ex:author @ex:Organization

);

}

ex:BlogPost

EXTENDS ex:WebResource {

ex:url .;

ex:title rdf:langString;

(

ex:author @ex:Person |

ex:author @ex:Organization

);

}

ex:DocumentationPage

EXTENDS ex:WebResource {

ex:url .;

ex:title rdf:langString;

ex:author @ex:Organization;

}

(b) After step 2

Listing 3: Simpli�cation step 2 (in ShExC-like pseudo-syntax)

13

2. Background

ex:CreativeWork {

ex:url .;

ex:title rdf:langString;

(

ex:author @ex:Person+ |

ex:author @ex:Organization

);

ex:cites @ex:CreativeWork+;

}

ex:ScholarlyArticle

EXTENDS ex:CreativeWork {

ex:title rdf:langString;

ex:author @ex:Person+;

ex:cites @ex:CreativeWork+;

}

ex:WebResource

EXTENDS ex:CreativeWork {

ex:url .;

ex:title rdf:langString;

(

ex:author @ex:Person |

ex:author @ex:Organization

);

}

ex:BlogPost

EXTENDS ex:WebResource {

ex:url .;

ex:title rdf:langString;

(

ex:author @ex:Person |

ex:author @ex:Organization

);

}

ex:DocumentationPage

EXTENDS ex:WebResource {

ex:url .;

ex:title rdf:langString;

ex:author @ex:Organization;

}

(a) Before step 3

ex:CreativeWork {

ex:title rdf:langString;

(

ex:author @ex:Person+ |

ex:author @ex:Organization

);

}

ex:ScholarlyArticle

EXTENDS ex:CreativeWork {

ex:title rdf:langString;

ex:author @ex:Person+;

ex:cites @ex:CreativeWork+;

}

ex:WebResource

EXTENDS ex:CreativeWork {

ex:url .;

ex:title rdf:langString;

(

ex:author @ex:Person |

ex:author @ex:Organization

);

}

ex:BlogPost

EXTENDS ex:WebResource {

ex:url .;

ex:title rdf:langString;

(

ex:author @ex:Person |

ex:author @ex:Organization

);

}

ex:DocumentationPage

EXTENDS ex:WebResource {

ex:url .;

ex:title rdf:langString;

ex:author @ex:Organization;

}

(b) After step 3

Listing 4: Simpli�cation step 3 (in ShExC-like pseudo-syntax)

14

2.4. RDF2Graph

ex:CreativeWork {

ex:title rdf:langString;

(

ex:author @ex:Person+ |

ex:author @ex:Organization

);

}

ex:ScholarlyArticle

EXTENDS ex:CreativeWork {

ex:title rdf:langString;

ex:author @ex:Person+;

ex:cites @ex:CreativeWork+;

}

ex:WebResource

EXTENDS ex:CreativeWork {

ex:url .;

ex:title rdf:langString;

(

ex:author @ex:Person |

ex:author @ex:Organization

);

}

ex:BlogPost

EXTENDS ex:WebResource {

ex:url .;

ex:title rdf:langString;

(

ex:author @ex:Person |

ex:author @ex:Organization

);

}

ex:DocumentationPage

EXTENDS ex:WebResource {

ex:url .;

ex:title rdf:langString;

ex:author @ex:Organization;

}

(a) Before step 4

ex:CreativeWork {

ex:title rdf:langString;

(

ex:author @ex:Person+ |

ex:author @ex:Organization

);

}

ex:ScholarlyArticle

EXTENDS ex:CreativeWork {}

ex:WebResource

EXTENDS ex:CreativeWork {

ex:url .;

}

ex:BlogPost

EXTENDS ex:WebResource {}

ex:DocumentationPage

EXTENDS ex:WebResource {}

(b) After step 4

Listing 5: Simpli�cation step 4 (in ShExC-like pseudo-syntax)

15

2. Background

ex:CreativeWork {}

ex:ScholarlyArticle

EXTENDS ex:CreativeWork {

ex:cites @ex:ScholarlyArticle+

}

ex:WebResource

EXTENDS ex:CreativeWork {

ex:cites @ex:WebResource*
}

(a) Before simpli�cation

ex:CreativeWork {

ex:cites @ex:CreativeWork*
}

ex:ScholarlyArticle

EXTENDS ex:CreativeWork {}

ex:WebResource

EXTENDS ex:CreativeWork {}

(b) After simpli�cation

Listing 6: Simpli�cation (in ShExC-like pseudo-syntax), with class relations (this example
is independent from the previous example)

2.5. Wikimedia Toolforge

Wikimedia Toolforge is a hosting environment provided by the Wikimedia Foundation
where trusted members of the Wikimedia community may host and develop their tools or
other work. Most tools are web-based and reachable under the tools.wm�abs.org domain,
but it is also possible to run bots or analysis jobs on Wikimedia Toolforge. Tools can be
written in a variety of languages (e. g. PHP, Python, Java, JavaScript) and have access to live
replicas of the Wikimedia production databases, data dumps of Wikimedia projects, custom
tool-speci�c databases, and a Sun Grid Engine job execution system for long-running or
resource-intensive tasks.

16

https://tools.wmflabs.org/

3. Applying RDF2Graph to Wikidata

This chapter describes the changes that were made to RDF2Graph and related software
in the course of this thesis. Some of them are general improvements unrelated to Wiki-
data (section 3.1), some are motivated by the Wikidata use case but still generally useful
(sections 3.3 to 3.5), and some are speci�c to Wikidata and result in a version of RDF2-
Graph that cannot be used for other RDF graphs (section 3.2). All the changes are avail-
able in the source code repositories at https://github.com/lucaswerkmeister/RDF2Graph
and https://github.com/lucaswerkmeister/RDFSimpleCon, in the master and wikidata

branches; some of them may also be merged into the upstream RDF2Graph and RDFSim-
pleCon repositories in the future.

3.1. General RDF2Graph Updates
The master branch of the RDF2Graph source code repository has not seen any updates
since 2015 (when [3] was published), so some updates were needed to make the program
run on newer software versions and to target a more recent version of ShEx. Many of these
were rather minor in nature, but a few of the major ones concerning the ShEx exporter are
described in this section. (I later noticed that the RDF2Graph source code repository also
has a dev branch, which has some more recent changes including a few �xes, but most of
them are not relevant to the issues discussed here.)

The �nal step of the ShEx export was mostly rewritten from scratch. This is the step that
translates a JSON-LD �le describing the shapes of the schema into a ShExC �le; the previous
version did this using Jade, a templating engine for HTML documents (renamed to Pug
in 2016), constructing an HTML document containing a single plain-text <pre> element,
then extracting this text from the document using an HTML-to-text converter. The new
version directly produces the text from JavaScript and includes several improvements:
datatypes are now properly supported, whereas the previous version only supported a
handful of hard-coded IRIs as datatypes and exported all other datatypes as if they were
actually shapes; pre�xes are used everywhere in the output, highly improving readability;
and the output is sorted, making the whole generation process more deterministic and
thus making it easier to compare the results of multiple inference processes.

The syntax of the generated ShExC schemas also required some changes. First, RDF2-
Graph originally targeted ShEx version 1.0 whereas the current release is version 2.0, which
introduced some syntactic changes (e. g. replacing some commas with semicolons). Second,
RDF2Graph emitted syntax for an experimental, in-progress version of ShEx with support
for inheritance between shapes: if, for example, the inferred schema contained classes for
both “human” and “person”, and “human” was a subclass of “person” in the input data
set, then RDF2Graph would declare that the “human” shape extended the “person” shape

17

https://github.com/lucaswerkmeister/RDF2Graph
https://github.com/lucaswerkmeister/RDFSimpleCon

3. Applying RDF2Graph to Wikidata

and omit predicates from the “person” shape in the “human” shape, since those would be
redundant with the predicates inherited from the “person” shape. This feature has not
made it into any released version of ShEx yet (it can still be found in on-shape-expression

branches of related repositories, though the syntax has slightly changed: it now uses
the keyword EXTENDS whereas RDF2Graph used the symbol &), so the ShEx exporter was
changed to only mention the parent classes for a shape in a comment, and simpli�cation
step 4 (see section 2.4) was disabled so that the redundant predicates are included after all,
since they are no longer automatically inherited.

3.2. Wikidata Support

This section outlines the general process that is used when running RDF2Graph against
data from Wikidata and then describes several changes to RDF2Graph that were necessary
to support this. (The subsequent subsections correspond to those changes, not to the
individual steps of the process.)

3.2.1. Overall process

Usually, RDF2Graph is run against a SPARQL endpoint which serves the RDF graph for
which one wants to infer the structure. However, simply running RDF2Graph against the
Wikidata Query Service (WDQS), the public SPARQL endpoint for Wikidata, would mean
attempting to infer a schema from all of Wikidata, which is neither the goal of this thesis
(that is to infer schemas from a small set of exemplary Items) nor even remotely feasible
given the amount of data in Wikidata. For example, the 2018-10-08 full Wikidata dump, in
N-Triples format, is 1.1 TB large after decompression and contains 7 523 105 374 triples.

Instead, a process was set up which, given a query which selects the exemplary Items,
downloads the related data for them and runs RDF2Graph against it. The process is
outlined in �g. 3.1 and controlled by a Make�le in the RDF2Graph repository, so that after
creating an example.entities.sparql �le with a SPARQL query selecting the exemplary
items, it is su�cient to run make example.shex to run the entire process and generate the
ShEx �le.

First, the query selecting the exemplary Items is transformed into a query selecting all
the required data, using the Unix sed command. The generated query selects all Statements
of the exemplary Items (“direct Statements”), all Statements of Items which occur as values
of the direct Statements (“indirect Statements”), and all “instance of” (P31) Statements of
Items which occur as values of the indirect Statements. This query is run against WDQS,
which returns the results in JSON format; they are then piped into a script for the jq tool
(“JSON query”), which transforms them into N-Triples format, and stored in an N-Triples
�le.

Next, the Apache Jena Fuseki SPARQL server is run locally, serving the data from
this N-Triples �le. As soon as it has �nished loading the data �le, RDF2Graph is run
against this local SPARQL endpoint for the main inference process, including RDF2Graph’s
simpli�cation step. Once RDF2Graph terminates, the Fuseki server is stopped.

18

http://www.wikidata.org/entity/P31

3.2. Wikidata Support

example.entities.sparql

example.data.sparql

example.json

example.nt

example-fuseki/

http://localhost:3030/example/query

example-results/

example.shex

example.html

sed

WDQS

jq

Fuseki

RDF2Graph

RDF2Graph, simplify

ShEx exporter

pygmentize

Figure 3.1.: Overview of the process

19

3. Applying RDF2Graph to Wikidata

Afterwards, the results from RDF2Graph are available as a graph of classes with as-
sociated information, and the RDF2Graph ShEx exporter is run to produce a ShEx �le.
If desired (make example.html), that �le can also be turned into an HTML �le using the
Pygments syntax highlighter, which makes the ShEx code more readable.

3.2.2. Type predicates

RDF2Graph heavily relies on the type information of the RDF graph it inspects: it uses the
rdf:type predicate to map a node to its shape (assuming a one-to-one mapping between
classes and shapes) and the rdfs:subClassOf predicate to determine the parent classes of
a class, which are used in the simpli�cation step. However, Wikidata does not use these
standard predicates: the class(es) and superclass(es) of an item are regular Statements like
any other Wikidata Statement, using the Properties “instance of” (P31) and “subclass of”
(P279). In the RDF export, rdf:type and rdfs:subClassOf are only used as part of the
meta-model, assigning each item the class wikibase:Item, a subclass of wikibase:Entity.

To use the type information within the data instead of this meta-model, the queries
which RDF2Graph uses to explore the input graph were changed to use the predicates
wdt:P31 and wdt:P279 instead of rdf:type and rdfs:subClassOf. (Note that RDF2Graph
still uses rdf:type and rdfs:subClassOf when writing its internal results graph, so queries
operating on that graph as part of the simpli�cation step still use those predicates.)

3.2.3. Data reduction

The Labels, Descriptions and Aliases of an Item can make up a large portion of its data,
but are generally not interesting for ShEx schemas, since there is rarely more to say
about them than “an Item has one or more Labels, zero or more Descriptions, and zero or
more Aliases”. (A manually curated schema might go beyond this – perhaps requiring,
for example, that Items about Spanish municipalities have a label in Spanish – but such
details are beyond the ability of RDF2Graph to infer.) Additionally, Wikidata Items often
have a number of Statements listing external identi�ers for the Item (that is, identi�ers
in other databases for the same concept described by this Item): for example, Wikidata’s
Q80 corresponds to no99010609 in the Library of Congress (LoC), 85312226 in the Virtual
International Authority File (VIAF), nm3805083 in the Internet Movie Database (IMDb),
@timberners_lee on Twitter, and dozens of other external identi�ers. All these external
identi�ers are technically just ordinary Statements, but since they carry a rather di�erent
kind of information than other Statements, they are sorted into a separate section when
viewing the Item on the Wikidata website.

In order to reduce the runtime of the RDF2Graph inference process, and to reduce clutter
in the inferred schemas, the Labels, Descriptions, Aliases, and external identi�ers of an
Item are excluded when downloading the data for a set of exemplary Items: the generated
query selecting the required data (example.data.sparql in �g. 3.1) only selects triples for
statements of non-external identi�er properties.

20

http://www.wikidata.org/entity/P31
http://www.wikidata.org/entity/P279
http://www.wikidata.org/entity/P279
http://www.wikidata.org/entity/Q80
http://id.loc.gov/authorities/names/no99010609
https://viaf.org/viaf/85312226
https://www.imdb.com/name/nm3805083
https://twitter.com/timberners_lee

3.3. Support for Cyclic Type Hierarchies

3.2.4. Full type hierarchy

One undesirable consequence of running RDF2Graph against a reduced data set is that
RDF2Graph cannot see the full type hierarchy of the classes involved: for example, depend-
ing on how much data was downloaded, it may or may not be aware that the classes “island
nation” (Q112099) and “sovereign state” (Q3624078) have a common superclass, “state”
(Q7275). And if RDF2Graph does not know that two classes have a common superclass, it
cannot merge them during the simpli�cation step.

To avoid this, an option was added to RDF2Graph which allows specifying an alternative
SPARQL endpoint for all queries that require a full view of the data, and this alternative
endpoint is used for the query to get all parent and child classes of a class. (If the option is
not speci�ed, it falls back to the default SPARQL endpoint.) The Make�le mentioned in
section 3.2.1 speci�es the WDQS SPARQL endpoint for this option, so that RDF2Graph
can discover the full class hierarchy around all relevant items even when running against
a subset of Wikidata.

3.2.5. Simplification

RDF2Graph’s simpli�cation step would originally merge all classes into their superclasses,
almost completely unconditionally, stopping only at the root class owl:Thing. This works
well for RDF graphs with a lot of di�erent subclasses directly beneath owl:Thing, but is
much too aggressive for Wikidata: not only does Wikidata have a di�erent root class
(“entity” (Q35120)), but it also has a complex hierarchy of abstract classes below that
root class, and merging other classes into those abstract classes (like “concept” (Q151885),
“abstract object” (Q7184903) or “subject” (Q830077)) would not result in useful schemas.

Therefore, step 2 in the simpli�cation process was adapted to add a number of Wikidata
Items to the set of classes which other classes should not be merged into (originally only
containing owl:Thing), and to stop looking for common superclasses of two classes after
walking up �ve levels in the class hierarchy. (The limit of �ve levels is an arbitrary choice
and could also be made con�gurable if deemed necessary in the future, but it seems to
work out well enough in practice.)

3.3. Support for Cyclic Type Hierarchies

As outlined in section 2.4, RDF2Graph has an optional simpli�cation feature where the
schema will be simpli�ed in several steps, based on the type hierarchy of the classes
involved. For this, the type hierarchy is loaded into an in-memory data structure, which in
the code is referred to as a “tree”. In fact, the data structure forms a generic, directed graph,
where each node may have any number of children (subclasses) and any number of parents
(superclasses), and no restrictions on the structure are enforced during construction.
However, while the algorithms subsequently operating on the data structure support
classes with multiple parent classes, they do assume that the graph is acyclic, i. e., that no
class is an indirect subclass of itself.

This assumption makes sense in general, since a type hierarchy is usually assumed
to be acyclic: if there is a cycle in the subclass relations between a list of classes, that

21

http://www.wikidata.org/entity/Q112099
http://www.wikidata.org/entity/Q112099
http://www.wikidata.org/entity/Q3624078
http://www.wikidata.org/entity/Q7275
http://www.wikidata.org/entity/Q7275
http://www.wikidata.org/entity/Q35120
http://www.wikidata.org/entity/Q151885
http://www.wikidata.org/entity/Q7184903
http://www.wikidata.org/entity/Q830077

3. Applying RDF2Graph to Wikidata

e�ectively renders all these classes equivalent, since any instance of any one of these
classes is then also an (indirect) instance of all the other classes. However, occasional
emergence of subclass cycles is almost unavoidable on Wikidata: each of the subclass links
may appear reasonable for just the two Items it connects, and an editor looking at these
Items will not necessarily notice that a cycle has been formed, since the other statements
forming the cycle are not visible when looking at these two Items. For example, at the
time of writing, there exists a cycle in Wikidata between the following classes, each a
subclass of the next: “representation” (Q4393498), “property” (Q937228), “category of being”
(Q714737), “concept” (Q151885), “mental representation” (Q2145290), “representation”
(Q4393498). It was �rst introduced in Wikidata revision 726473098, when the parent class
of “mental representation” (Q2145290) was changed from “representation” (Q1272626) to
“representation” (Q4393498), and reinforced in Wikidata revision 726473565; the latter
revision was later reverted in Wikidata revision 735108434, citing the created subclass cycle
as part of the reason, but as the �rst revision was not reverted nor the Item otherwise edited
since then, the cycle persists so far. The fact that editors work in di�erent languages, and
di�erent items may share the same label in some languages (see Q1272626 and Q4393498,
both “representation”, above), contributes to the problem that such cycles can be introduced
accidentally and the correct way to break them is not always obvious.

While, by and large, these cycles are eventually found and �xed by the community, it is
possible that, in the meantime, RDF2Graph will run on a subclass graph containing cycles.
Therefore, to make the process more robust, several algorithms in the simpli�cation step
were adjusted to be able to cope with cyclic graphs. This is valuable even though the
results in the cycle may no longer make sense, since it means that a cycle somewhere in
the class hierarchy, typically among very abstract classes, will no longer impede simpli�-
cation in other, more concrete classes, where simpli�cation is much more useful anyways.
Without these improvements, if any part of the simpli�cation step failed (typically with a
StackOverflowError), all simpli�cation results would be lost and the ShEx export would
run on the original, completely unsimpli�ed graph.

3.3.1. GETALLCHILDREN

A general component of the new algorithms are methods to get all children and parents
of a node, in a matter that is guaranteed to terminate even if there are cycles among the
children or parents. The method for collecting all child nodes is outlined in algorithm 1,
and the method for collecting all parent nodes is completely analogous. Since each node
can only enter the return set once, the queue only grows when nodes are added to the
return set, and each iteration takes one node from the queue, the algorithm must eventually
exhaust the queue and terminate, provided that the set of nodes reachable from the initial
node is �nite.

3.3.2. Counting instances

With this in place, it becomes easy to reimplement the method which counts the number
of direct and indirect instances of each class, based on the direct instance counts on each
class node. Previously, the method operated recursively, aggregating instance counts for

22

http://www.wikidata.org/entity/Q4393498
http://www.wikidata.org/entity/Q937228
http://www.wikidata.org/entity/Q714737
http://www.wikidata.org/entity/Q714737
http://www.wikidata.org/entity/Q151885
http://www.wikidata.org/entity/Q2145290
http://www.wikidata.org/entity/Q4393498
http://www.wikidata.org/entity/Q4393498
https://www.wikidata.org/wiki/Special:Diff/726473098
http://www.wikidata.org/entity/Q2145290
http://www.wikidata.org/entity/Q1272626
http://www.wikidata.org/entity/Q4393498
https://www.wikidata.org/wiki/Special:Diff/726473565
https://www.wikidata.org/wiki/Special:Diff/735108434
http://www.wikidata.org/entity/Q1272626
http://www.wikidata.org/entity/Q4393498

3.3. Support for Cyclic Type Hierarchies

Algorithm 1 Algorithm to collect all direct and indirect child nodes in a graph
function GetAllChildren(node)

initialize set of all children (empty)
initialize working queue of children (empty)
add to queue← direct children of node
while queue , ∅ do

child← take from queue
if child < set then

add to set← child
add to queue← direct children of child

end if
end while
return set

end function

each indirect subclass of a class all the way up to the class itself, and this recursion would
never terminate when encountering a cycle of subclasses. Instead, the new implementation
collects all direct and indirect subclasses up-front using algorithm 1 and then sums up
their direct instance counts.

3.3.3. Simplification steps 3 and 4

Two steps of the simpli�cation process remove some of the temporary (added) type links
of a node, based on the temporary type links of its neighboring nodes: step 3 removes
temporary type links from parent classes that are only found in one child class, and step 4
removes temporary type links from child classes that are made redundant by a type link
in the parent class. Both steps were originally implemented as inspecting the neighboring
nodes’ temporary type links and then directly manipulating the node’s own temporary
type links. This required that each step traversed the nodes in the correct order (parents
before children for step 3, children before parents for step 4) and was implemented by
traversing the graph recursively, which is problematic if the graph contains cycles.

This problem was solved by splitting up the analysis and modi�cation of the temporary
type links: each step now has two parts, where the �rst part marks all temporary type
links that should be removed, and the second part actually removes them from a node’s
temporary type links. As long as the �rst part (“mark”) for all nodes is run before the
second part (“remove”) for any node, these parts can visit the nodes in any order, and
instead of recursively traversing the graph, both steps now �rst collect all child nodes of
the root node and then iterate them twice, running the �rst part (“mark”) the �rst time
and the second part (“remove”) the second time.

3.3.4. Node distances

RDF2Graph also has a method to determine the distance of all indirect parents from a
certain node, which is used when searching for common superclasses of a class. Like the

23

3. Applying RDF2Graph to Wikidata

other methods, this was implemented recursively, setting the distance of a parent node to
the current value of a counter and then calling the same method on all parent nodes of
that node with the counter incremented by one. In this case, the recursion was kept, but
the method was adjusted to only visit a parent node if it has not been visited before, or if
its current distance is larger than the counter value. The second part of the condition is
necessary to ensure that the distance is set correctly if a node is visited �rst via a longer
path and then later again via a shorter path, which is possible since the method implements
a depth-�rst search instead of a breadth-�rst search.

3.3.5. Parent check

There is also a method to determine whether a certain node is a (direct or indirect) parent
node of another node, originally implemented recursively. This was replaced by a version
which �rst retrieves the set of the potential child node’s parent nodes, using algorithm 1,
and then checks whether the potential parent node is an element of it.

3.4. Schema Reduction

An unexpected problem emerged once the schema inference itself was in place: it proved
to be almost impossible to validate Items against the inferred schemas for all but the
most simple data sets. Two ShEx implementations were evaluated: shex.js, a JavaScript
implementation running in Node.js, and shex-java, a Java implementation o�ering two
di�erent validation algorithms [2]. shex.js would usually crash with an out-of-memory
error from Node.js within a few minutes, whereas shex-java would run for hours on end
without any output or apparent progress (with either algorithm).

One attempted strategy to be able to validate the inferred schemas was to reduce the size
of the schemas by dropping some less-relevant elements. This was part of the motivation
for dropping Labels, Descriptions, Aliases, and external identi�ers of an Item from the
data set that the inference would be run against (see section 3.2.3); however, reducing the
input data set is not the only way to reduce the resulting schema: it is also possible to
further trim the schema after the inference process has �nished. This was implemented in
the �nal step of the ShEx exporter, the shexbuilder.js program, which had already been
mostly rewritten for di�erent reasons (see section 3.1).

Elements can be removed from a schema on three di�erent levels: an individual type
link can be removed from a predicate, a predicate can be removed from a shape, or an
entire shape can be removed from the schema. In each case, the decision on whether to
keep or drop the element requires an assessment of whether the element can be dropped,
and whether it should be dropped.

Shapes can be removed from a schema as long as they are not referenced by any other
shape, and as long as they are not interesting as “entry points” for the schema (i. e., shapes
to validate the initial focus node against). The second condition is subjective, but in
practice, shapes that are interesting as “entry points” are usually also referred to by other
shapes, so the condition can be ignored. The �rst condition is implemented in the exporter
by maintaining two sets of shapes: one for shapes which are referenced from type links,

24

3.5. Depth Limits in Validation

and one for shapes which should perhaps be dropped. When printing the �nal schema,
only shapes found in the latter set but not in the former are skipped.

Predicates can be removed from a shape unconditionally: since the shapes produced by
RDF2Graph are not closed, removing a predicate from a shape means that triples using that
predicate will now be ignored by the validator when testing against the shape. However, a
shape without predicates is hardly useful, so a balance needs to be struck when deciding
whether a predicate should be dropped.

Individual type links can, in principle, never be removed from a predicate: if a type link
occurs in the schema, then there must have been a corresponding triple in the input data,
and removing the type link would turn that triple into a violation, at least if simpli�cation
was applied to the schema. (Without simpli�cation, some type links may be redundant
due to other type links for related classes.) However, this assumes a perfect input data
set which should not have any violations, which is an unrealistic assumption at least for
Wikidata input data: even if the exemplary input Items were carefully selected and have
no incorrect Statements themselves, it is unlikely that all the Items which those Items link
to are also �awless. (See section 5.1 for an example of problems in a high-pro�le input
data set.) Given this situation, it is defensible to drop type links which are likely to re�ect
errors in the input data.

The decision whether to drop an element or not is implemented as a simple numeric
threshold on all three levels. RDF2Graph tracks the number of instances of each class it
encounters, and this information is still available to the ShEx exporter, which can therefore
drop type links that are used less thanm times, predicates that are used less than n times
(sum of all type link uses), and shapes for classes with less than o instances. The three
limits are independent, though in practice it makes most sense to choose them such that
m > n > o. An alternative strategy to explore in the future might be to turn those �xed
thresholds into ratios, so that the same parameters can be used for vastly di�erent data
sets with varying numbers of class instances overall.

Unfortunately, this strategy was not very successful in enabling validation of the
schemas. Only at almost draconian thresholds for dropping elements, where only a
few shapes and predicates would remain in the schema, would validation succeed; manual
bisecting of the schemas which failed to validate would often turn up a fairly small prob-
lematic part of a schema which a simple count-based threshold was ill-suited to detect
automatically. Therefore, while the code implementing the limits remains in place, all
three are disabled by default.

3.5. Depth Limits in Validation

Another attempt to make validation of the inferred schemas more feasible was to limit
the maximum depth during the validation process. Consider, for example, a simple shape
for humans, which describes a human as having any number of human parents and a
date of birth. To validate whether any given node is actually a human, all its direct and
indirect parents must also be validated, potentially thousands of ancestors, no matter how
remote. If the shape is more complicated, with more predicates potentially linking to
other shapes as well, this can get very expensive rather quickly. On the other hand, it

25

3. Applying RDF2Graph to Wikidata

is not clear that the more remote validations here are useful, at least in the context of
validating Wikidata Items (where di�erent areas of Items may be edited by very di�erent
sets of editors) against automatically inferred schemas (which are likely to have inherited
some imperfections from the input data): most inferred schemas tend to include shapes
for certain core classes, e. g. “human” (Q5) or “sovereign state” (Q3624078), but someone
attempting to validate an Item for a mammalian protein is unlikely to care that the Item
for the protein’s discoverer’s husband’s country of citizenship happens to be missing an
“in�ation rate” (P1279) statement.

Therefore, in an attempt to reduce the amount of irrelevant violations and to make
the validation terminate without crashing, a patch to add an optional depth limit to the
shex.js implementation was developed. With this change, if the depth limit was reached,
the validator would skip recursing into another shape and instead only record the fact
that the limit was reached before continuing.

Unfortunately, however, this proved unsuccessful. When testing some Items against
several inferred schemas, low limits (2–4) would yield unpredictable results (sometimes
validate successfully, sometimes report problems, sometimes crash), whereas higher limits
(up to 10) would typically have the same result as validation without any depth limit
(either validation failure or crash), though sometimes with wildly varying runtimes. (More
details can be found in appendix A.2.) One possible explanation for this is that pruning
one part of the validation process when reaching the depth limit may cause the validator
to spend more time in other areas, which may previously not have been necessary if the
pruned part would otherwise have resulted in a violation.

26

http://www.wikidata.org/entity/Q5
http://www.wikidata.org/entity/Q3624078
http://www.wikidata.org/entity/P1279

4. TheWikidata Shape Expressions
Inference Tool

This chapter describes the major user-facing result of this thesis: the Wikidata Shape
Expressions Inference tool, which makes the version of RDF2Graph adapted to Wikidata
easily available to Wikidata editors. This includes the general design and implementation
of the tool (section 4.1), some speci�cs to make it run on the Wikimedia Toolforge platform
(section 4.3), and a few utilities to make it more pleasant to use (section 4.2). The tool is
online at https://tools.wmflabs.org/wd-shex-infer/ and its source code may be found
at https://phabricator.wikimedia.org/source/tool-wd-shex-infer/.

4.1. General Design and Implementation

The goal of the tool is to make the schema inference process available to other Wikidata
editors, which is necessary because RDF2Graph, its ShEx exporter, and the Make�le-based
process around them require several di�erent programs and programming runtimes to
be available, which it would be unreasonable to expect every interested user to install
(not to mention that the Make�le assumes a Unix-like environment, whereas the potential
users are likely to use Windows). Installing such a program on Wikimedia Toolforge and
making it available to users via a web interface is a common approach in the Wikimedia
movement.

In this Wikimedia-hosted tool, users enter a SPARQL query selecting the set of exemplary
Items from which to infer a schema, and the tool downloads the associated data, run RDF2-
Graph and the ShEx exporter, and makes the ShExC output available to the user. The
simplest process for that would be to directly return the ShExC code in the server’s
response to the user’s HTTP request, but that is not possible: even simple inference jobs
from a single Item take at least several minutes, and more complicated jobs over several
dozens of Items can take multiple hours – the connection to the user would time out long
before that, and the user might also become impatient and simply close their browser
window or tab.

Instead, the inference process runs in the background, and after submitting the SPARQL
query and starting the process, the user is redirected to a page describing the currently
running job. They can periodically reload the page, and each time the page is loaded,
the tool checks if the background process is still running. If the background process has
�nished in the meantime, the tool collects the output, cleans up the temporary �les left
behind by the process, and �nally makes the output (primarily the ShExC code, but also
debugging outputs) available to the user.

27

https://tools.wmflabs.org/wd-shex-infer/
https://phabricator.wikimedia.org/source/tool-wd-shex-infer/

4. The Wikidata Shape Expressions Inference Tool

Figure 4.1.: Index page of the Wikidata Shape Expressions Inference tool

Figure 4.2.: Detail page for job #37

28

https://tools.wmflabs.org/wd-shex-infer/job/37

4.2. Schema Reading Utilities

Since this already more or less requires storing inputs and outputs persistently, a natural
extension of this scheme is to make this job page available to others, so that not only the
original submitter but also other users can inspect a running or completed job. (The input
data is entirely public data from Wikidata, so there is no reason to restrict the visibility
of the outputs.) This facilitates easy collaboration on schemas between multiple users
and allows even casual visitors to see how the tool operates, and what kinds of results
it produces, without having to start their own inference process. To make each result
easier to comprehend for others, users can also submit a title, description, and/or URL for
additional information along with their SPARQL query. Figure 4.2 shows the page for one
�nished job, with its title, description, and URL (the “more information” link), and �g. 4.1
shows the index page of the tool, listing all the �nished jobs that were submitted. (At the
time of taking the screenshot, no jobs were currently running, otherwise they would also
be listed. The screenshot also truncates the list of �nished jobs – the full list is several
times longer.)

As the inference process consumes a lot of resources, it does not run directly on the
same system as the web server providing the tool’s front-end. Instead, it is submitted as a
job for the Sun Grid Engine system also o�ered by the Wikimedia Toolforge environment,
where it will be run on some execution host with su�cient free resources. To ensure that
the system’s resources, shared with all other Wikimedia Toolforge users, are not exhausted
by this one tool, the tool only allows at most two jobs to run in parallel, and prevents users
from submitting any more jobs if too many jobs are currently running, instead asking
them to try again later. Job submission is also restricted to users with a valid Wikidata
account, authenticated via OAuth. The identity of the submitting user is another attribute
of a job, along with its title, description, URL, and SPARQL query, and can be seen by other
users who look at the pending or �nished jobs of the tool.

Details of each job, such as its title, submitting user, and submission time, are stored in
a tool-speci�c SQL database on the Wikimedia Toolforge database servers. However, the
outputs of a job (ShExC �le, standard output of the process, standard error of the process),
as well as to a lesser degree the SPARQL query forming its input, are too large to store in
a database. Instead, they are stored directly on the �le system.

4.2. Schema Reading Utilities

To make the ShEx output more readable, support for the ShExC syntax was added to the
popular Pygments syntax highlighter (Pygments pull request #770). If the ShEx code for
a job is requested by a browser or some other kind of client which declares that it can
accept HTML (using HTTP content negotiation), the tool applies the Pygments syntax
highlighter to the code on-the-�y and sends a complete HTML document containing the
pretti�ed code and associated CSS rules. Clients which do not accept HTML documents
receive the plain ShExC code instead.

The HTML document that is sent to browsers also includes a client-side script, which
searches for Wikidata Item IDs in the ShExC code, fetches the Labels of all mentioned
Item IDs from Wikidata, and adds them to the document in <abbr> abbreviation elements.
It also hyperlinks each reference of a shape to its de�nition, and the de�nition to the

29

https://bitbucket.org/birkenfeld/pygments-main/pull-requests/770

4. The Wikidata Shape Expressions Inference Tool

(a) Excerpt of an inferred schema for Linux
distributions

(b) The same schema with syntax highlight-
ing and the script applied – the cursor is
over the P277 Property ID

Figure 4.3.: Screenshots showing the e�ects of syntax highlighting and the client-side
script

corresponding Item on Wikidata. This makes it much more convenient to read the schema
in the browser: the user merely has to hover their mouse over a class to see its Label
instead of the Item ID; clicking on it brings the user to the shape for that class; and clicking
on the ID there brings the user to the Wikidata page for the class, where they can further
explore the related data.

A comparison of the e�ects of these two features can be seen in �g. 4.3.

4.3. Wikimedia Toolforge Support

Since Wikimedia Toolforge runs on a rather old Linux distribution (Ubuntu 14.04 “Trusty
Tahr”, originally released April 2014), the versions of various software used by RDF2Graph
and the rest of the inference process were too outdated to use out-of-the-box. The response
to this was twofold: to cope with older software versions where feasible, and to install
newer software versions where not.

RDF2Graph required Java 8, but only Java 7 is installed on Wikimedia Toolforge. For-
tunately, RDF2Graph only used Java 8 for syntactic constructs (“lambda” syntax) and
those only sparingly, so it was not too much work to make it compatible with Java 7
again. Similarly, Apache Jena and Fuseki have required Java 8 for some time already, but
fortunately RDF2Graph is compatible with their older versions which support Java 7, and
which could therefore be installed.

On the other hand, there is no obvious way to make the jq-based part of the data down-
load step work with jq version 1.4, which has no general string replacement capabilities.
Therefore, jq version 1.5 was installed locally into the tool’s home directory – as was the
latest version of Node.js, which was similarly outdated. The Pygments syntax highlighter
mentioned in section 4.2 was also installed locally, since ShExC syntax support is not yet
available in any released version.

Full installation instructions may be found in the README.md �le in the tool’s source
code repository.

30

5. Evaluation

The evaluation of this thesis mainly focuses on the quality and usefulness of the resulting
schemas. Unfortunately, without being able to reliably validate data sets against schemas
– for example, to verify whether an Item for an author matches a schema inferred from
�fty other authors – it is not possible to objectively assess the quality of the inferred
schemas. However, inspecting the schemas manually can still give insights on their quality
(section 5.1), as well as the quality of the underlying data, and it is also possible to extract
smaller subsets from the full schemas, which can then be used for validation (section 5.2). In
these ways, the schemas can still be useful even though they cannot be used for validation
directly. Additionally, the runtime of the inference process is examined in section 5.3.

5.1. Schema Quality

While the schema quality cannot be assessed objectively without reliable validation, it
is possible to simply look at the schemas and see if they “make sense” on their own.
Generally, the inferred schemas are much too large to read the entire schema, but one
can select the shapes for individual classes (randomly or by searching for the Item IDs of
speci�c classes) and check their type links. For example, listing 7 shows the shape for the
class “human” (Q5) from the schema inferred from 50 members of the 13th Riigikogu (the
Estonian parliament). In textual form, it means that a human should have the following
Statements:

• Member of any number of political parties, where the values are political parties.

• Any number of occupations, where the values are positions. This likely re�ects the
fact that the input data only contained politicians – other schemas often include
other possible classes for this property, such as “occupation” or “profession”.

• Any number of spoken, written or signed languages, where the values are languages.

• Optionally, a name in the subject’s native language.

• Any number of awards received, where the values are classes of awards. The target
class, “class of award”, is an artifact of the not completely consistent modeling of
awards in Wikidata: there is sometimes confusion about the relationship between
di�erent “levels” of awards, such as “award”, “peace prize”, “Nobel Prize”, “Nobel
Peace Prize”, “2018 Nobel Peace Prize”, and whether they should be instances or
subclasses of each other.

• Optionally, a place of birth, where the value is a human settlement.

31

http://www.wikidata.org/entity/Q5

5. Evaluation

wd:Q5 { # & wd:Q215627

wdt:P102 @wd:Q7278*;

wdt:P106 @wd:Q4164871*;

wdt:P1412 @wd:Q34770*;

wdt:P1559 rdf:langString?;

wdt:P166 @wd:Q38033430*;

wdt:P19 @wd:Q486972?;

(

wdt:P21 @wd:Q4369513? |

wdt:P21 @wd:Q48277?

);

wdt:P27 @wd:Q1048835?;

wdt:P373 xsd:string?;

wdt:P39 @wd:Q4164871*;

wdt:P569 xsd:dateTime?;

wdt:P69 @wd:Q2385804*;

wdt:P734 @wd:Q101352?;

wdt:P735 @wd:Q202444?;

wdt:P937 @wd:Q486972*
}

Listing 7: Excerpt of a schema inferred from 50 members of the 13th Riigikogu

• Optionally, a sex or gender, where the value is a sex of humans or a gender. The
two target classes are the result of the two most common gender Items in Wikidata,
“male” (Q6581097) and “female” (Q6581072), each having several “instance of” (P31)
statements.

• Optionally, a country of citizenship, where the value is a political territorial entity.

• Optionally, a Wikimedia Commons category.

• Any number of positions held by the subject, where the values are positions.

• Optionally, a date of birth.

• Any number of places where the subject was educated, where the values are educa-
tional institutions.

• Optionally, a family name, where the value is a family name.

• Optionally, a given name, where the value is a given name.

• Any number of work locations, where the values are human settlements.

Aside from some quirks of the input data, all of these seem reasonable to me. The most
obvious missing predicates are date and place of death, which is again due to the input

32

http://www.wikidata.org/entity/Q6581097
http://www.wikidata.org/entity/Q6581072
http://www.wikidata.org/entity/P31

5.1. Schema Quality

data set: all the members of the current Estonian parliament are alive, and while one might
expect to see dates of death on some Items they link to, the fact that currently only 33
parents of members of the 13th Riigikogu are known to Wikidata makes it seem plausible
enough that there simply happened to be no dead humans in the full input data.

As the input data sets get larger, the schemas also tend to grow: in the number of
shapes (classes), the number of predicates in each shape, and also in the number of possible
classes for a predicate. For example, before simpli�cation, the “human” (Q5) shape from
the schema inferred from the set of US presidents lists nine possible classes for someone’s
“given name” (P735):

• A generic “given name” (Q202444), such as “Boylston” (Q18396847) in Thomas
Boylston Adams, the third son of President John Adams. (The more common given
names generally have a more speci�c class, usually one of the next three listed here.)

• A “male given name” (Q12308941), such as “James” (Q677191) in President James
A. Gar�eld.

• A “female given name” (Q11879590), such as “Ida” (Q644599) in Ida Stover Eisenhower,
mother of President Eisenhower.

• A “unisex given name” (Q3409032), such as “Anne” (Q564684) in Nancy Reagan (born
Anne Frances Robbins), wife of President Reagan. (“Anne” is a female given name in
English, but sometimes used as a male given name in the Netherlands or France, and
therefore classi�ed as both female and unisex in Wikidata, depending on language.)

• A “compound given name” (Q1243157), such as “George Washington” (Q16275947)
in George Washington Adams, the �rst son of President John Quincy Adams.

• A “hypocorism” (Q1130279) (a diminutive form of a name), such as “Ron” (Q2165388)
in Ron Reagan, son of President Reagan.

• A “diminutive” (Q108709), such as “Jimmy” (Q4166211) in President Jimmy Carter.
Arguably, that Item should be an instance of the aforementioned hypocorism class
instead of the more generic diminutive class, which also includes non-names like
“auntie”.

• “Initials instead of given names” (Q19803443), such as “S.” (Q19803518) in President
Harry S. Truman (not an abbreviation).

• A “family name” (Q101352), such as “Simpson” (Q2800825) in President Ulysses
S. Grant (the “S.” is sometimes believed to be short for “Simpson”, his mother’s
maiden name). This is clearly an error: even if the “S.” does stand for “Simpson”,
which Grant denied, the correct Item to use would be the given name Q50876620
(same label), not the family name Q2800825.

If the two problems pointed out above were to be �xed, all the remaining classes could be
merged into the generic “given name” (Q202444) class, as in the earlier schema. However,
due to the presence of “family name” (Q101352), the best common superclass is instead

33

http://www.wikidata.org/entity/Q5
http://www.wikidata.org/entity/P735
http://www.wikidata.org/entity/Q202444
http://www.wikidata.org/entity/Q18396847
http://www.wikidata.org/entity/Q12308941
http://www.wikidata.org/entity/Q677191
http://www.wikidata.org/entity/Q11879590
http://www.wikidata.org/entity/Q644599
http://www.wikidata.org/entity/Q3409032
http://www.wikidata.org/entity/Q564684
http://www.wikidata.org/entity/Q1243157
http://www.wikidata.org/entity/Q16275947
http://www.wikidata.org/entity/Q1130279
http://www.wikidata.org/entity/Q2165388
http://www.wikidata.org/entity/Q108709
http://www.wikidata.org/entity/Q4166211
http://www.wikidata.org/entity/Q19803443
http://www.wikidata.org/entity/Q19803518
http://www.wikidata.org/entity/Q101352
http://www.wikidata.org/entity/Q2800825
http://www.wikidata.org/entity/Q50876620
http://www.wikidata.org/entity/Q2800825
http://www.wikidata.org/entity/Q202444
http://www.wikidata.org/entity/Q101352

5. Evaluation

“anthroponym” (Q10856962), the common superclass of given and last names, and the
“diminutive” (Q108709) class remains unmerged, as it is not a subclass of any kind of name.

One can continue to pick apart the generated schemas in this manner for hours, and I
have done so while working on this thesis in order to �nd problems and possible improve-
ments in the inference process. Three insights emerge:

1. The simpli�cation step is vital for readable schemas. The schemas are no less
correct without simpli�cation as far as the input data set is concerned, but if the
numerous subclasses in Wikidata’s hierarchy are never merged, the schemas become
exceedingly tedious to read for humans, and they will also often match other data
sets less well if the other data sets involve subclasses that were not encountered in
the original input data.
This can be seen in some of the older jobs of the Wikidata Shape Expressions
Inference tool: if there is a StackOverflowError in the standard error of the inference
process, it means that RDF2Graph crashed during the simpli�cation step and the
ShEx export ran on the original, unsimpli�ed graph. (Later, the inference step was
made more robust, which is why newer jobs do not have this problem.)

2. Sometimes, biases in the schema are clearly visible, due to biases in the input data
set. (In one particularly egregious case, a schema proclaimed that a given name must
always be a male given name, since there had been no women with given names
in the input data set.) One can presume that at other times biases in the schema
are not as clearly visible, which does not mean that they are not present. To arrive
at useful schemas, care must be taken when selecting the input data set, and the
results must be viewed critically.

3. Sometimes, the schema re�ects errors in the input data, as in the case above where
a family name Item was used for a given name. This can often be traced back to
confusion between several Items with similar labels. Such errors are usually visible
in the resulting schema if one takes the time to read it, though they are not always
obvious due to the simpli�cation (as when the classes for given and family names
were merged into anthroponyms above).

5.2. Manual Schema Extraction

One way to make use of the inferred schemas even though they cannot be used for
validation directly is to extract a smaller subset of the schema manually, then validating
Items against that. If desired, that schema can then be further altered and augmented as
deemed necessary, making the original schema the basis of a manually curated one.

Generally, to extract parts of the schema, one starts with a basic shape for the input
Items (e. g. “human” (Q5) if the schema was inferred from a set of humans), copies it
into the reduced schema, and repeats this procedure for all shapes (classes) mentioned by
that shape which had not been copied yet. Predicates which link to shapes that should
not be included can be dropped when copying a shape: for example, the “country of
citizenship” (P27) shape should be dropped if one is not interested in including shapes

34

http://www.wikidata.org/entity/Q10856962
http://www.wikidata.org/entity/Q108709
http://www.wikidata.org/entity/Q5
http://www.wikidata.org/entity/P27
http://www.wikidata.org/entity/P27

5.2. Manual Schema Extraction

for countries, states etc. in the reduced schema. Some predicates may also need to be
moved between shapes, or the target classes may need to be adjusted, if the results of the
automatic simpli�cation are not satisfactory, e. g. if unrelated classes were merged into a
very fundamental base class like “property” (Q937228) despite the changes in section 3.2.5.

Listing 8 shows two schemas that were manually extracted in this fashion from schemas
inferred by the Wikidata Shape Expressions Inference tool. Listing 8a was extracted from
a schema inferred from 100 scienti�c articles about the Zika virus, and contains shapes for
the classes “disease” (Q12136) and “taxon” (Q16521): diseases may be caused (indirectly or
immediately) by taxa, and taxa may e�ect diseases and have any number of parent taxa.
Listing 8b was extracted from a schema inferred from the set of �lms which won three or
more Academy Awards (“Oscars”) and contains shapes for the classes “�lm” (Q11424) and
“human” (Q5): �lms have human directors, editor, cast members, screenwriters, etc., and
humans may have parents, any number of spouses and children, and dates of birth and
death.

These schemas are simple enough that they can be validated using the “Simple Online
Validator” at https://rawgit.com/shexSpec/shex.js/wikidata/doc/shex-simple.html,
which automatically downloads all the required data from Wikidata. Validating 100
arbitrary diseases against the shape for “disease” (Q12136) from listing 8a mostly yields
positive results, with only four violations: the Items “X-linked adrenoleukodystrophy”
(Q366964), “Morquio Syndrome” (Q580285) and “San�lippo syndrome” (Q2200359) have
more than one “NCI Thesaurus ID” (P1748) Statement, while the schema says a disease may
only have zero or one such IDs, and the Item “nodding disease” (Q895930) fails validation
because it has two “has cause” (P828) Statements, “autoimmune disease” (Q8084905) and
“parasitic infectious diseases” (Q1601794), whereas the schema says a disease may only
have zero or one causes. (The schema also says that those causes should be taxa, not other
diseases, but the shape for taxa is su�ciently lax that these diseases match it.) Validating
100 arbitrary �lms against the shape for “�lm” (Q11424) from listing 8b also yields positive
results with only a single violation – “Detective Conan” (Q185143) has two “logo image”
(P154) Statements (French and Japanese) whereas the schema says it should only have one.

A second look at the schemas makes it clear why there are so few violations: the
cardinalities for all predicates, without exception, are either ? (“zero or one”) or * (“any
number”). A completely empty Item with no Statements at all will match all four shapes
in listing 8. This is likely an artifact of the schema extraction procedure, which in this
case was extremely selective of shapes to ensure that the schema would �t on one page
of this document, and therefore only included very few shapes, each of which had had
a high number of examples in the input data set: enough that, for any Property, there
was an example Item missing Statements for that Property, forcing the lower boundary of
the cardinality to be zero. Overall, the sample schemas investigated in appendix A.3 have
17 % to 34 % of non-optional predicates, so if one includes some more shapes during the
extraction process, they are bound to include some required predicates soon. (Alternatively,
the cardinality of some predicates could be manually raised during the extraction.)

Generally, these extracted schemas appear to be useful to �nd some mistakes, though
their utility can be increased by extracting larger parts of the schemas and by further
re�ning them according to one’s personal experience with the data model. A useful side
e�ect is that the kind of careful inspection of the schema which is necessary to extract

35

http://www.wikidata.org/entity/Q937228
http://www.wikidata.org/entity/Q12136
http://www.wikidata.org/entity/Q16521
http://www.wikidata.org/entity/Q11424
http://www.wikidata.org/entity/Q5
https://rawgit.com/shexSpec/shex.js/wikidata/doc/shex-simple.html
http://www.wikidata.org/entity/Q12136
http://www.wikidata.org/entity/Q366964
http://www.wikidata.org/entity/Q366964
http://www.wikidata.org/entity/Q580285
http://www.wikidata.org/entity/Q2200359
http://www.wikidata.org/entity/P1748
http://www.wikidata.org/entity/Q895930
http://www.wikidata.org/entity/P828
http://www.wikidata.org/entity/Q8084905
http://www.wikidata.org/entity/Q1601794
http://www.wikidata.org/entity/Q11424
http://www.wikidata.org/entity/Q185143
http://www.wikidata.org/entity/P154
http://www.wikidata.org/entity/P154

5. Evaluation

useful parts of it will also likely �nd some problems in the schema where they exist,
pointing at errors in the original input data set, as demonstrated in section 5.1.

36

5.2. Manual Schema Extraction

wd:Q12136 {

wdt:P1478 @wd:Q16521?;

wdt:P1748 xsd:string?;

wdt:P2572 xsd:string?;

wdt:P373 xsd:string?;

wdt:P667 xsd:string?;

wdt:P828 @wd:Q16521?

}

wd:Q16521 {

wdt:P1542 @wd:Q12136?;

wdt:P171 @wd:Q16521*;

wdt:P225 xsd:string?;

wdt:P373 xsd:string?;

wdt:P935 xsd:string?

}

(a) Schema for diseases, based on job #37

wd:Q11424 {

wdt:P1040 @wd:Q5*;

wdt:P1431 @wd:Q5*;

wdt:P154 .?;

wdt:P161 @wd:Q5*;

wdt:P162 @wd:Q5*;

wdt:P175 @wd:Q5?;

wdt:P1809 @wd:Q5*;

wdt:P2130 xsd:decimal?;

wdt:P2142 xsd:decimal?;

wdt:P2515 @wd:Q5*;

wdt:P2554 @wd:Q5*;

wdt:P2769 xsd:decimal?;

wdt:P3092 @wd:Q5*;

wdt:P3174 @wd:Q5*;

wdt:P3300 @wd:Q5?;

wdt:P344 @wd:Q5*;

wdt:P373 xsd:string?;

wdt:P57 @wd:Q5*;

wdt:P58 @wd:Q5*;

wdt:P725 @wd:Q5*;

wdt:P86 @wd:Q5*
}

wd:Q5 {

wdt:P22 @wd:Q5?;

wdt:P25 @wd:Q5?;

wdt:P26 @wd:Q5*;

wdt:P40 @wd:Q5*;

wdt:P569 xsd:dateTime?;

wdt:P570 xsd:dateTime?

}

(b) Schema for �lms, based on job #36

Listing 8: Two schemas manually extracted from automatically inferred ones

37

https://tools.wmflabs.org/wd-shex-infer/job/37
https://tools.wmflabs.org/wd-shex-infer/job/36

5. Evaluation

5.3. Duration of the Inference Process

While attempts to validate data against the inferred schema su�er due to the size of the
input data and the schemas, no such problems appear to plague the inference process,
which, while slow, has a more reliable runtime. To some degree, this was already apparent
in the execution times of the various jobs that were run on the Wikidata Shape Expressions
Inference tool: ranging from �ve or ten minutes to several hours, they roughly follow the
size of the input data linearly.

However, the timing data from the Wikidata Shape Expressions Inference tool is not
without its problems: as the tool was tested with di�erent jobs, various problems were
discovered and subsequently �xed (some of them described in more detail earlier, others
too minor to be worth mentioning), so the runtimes available from the tool apply to a
range of software versions, with several instances of the same job being repeated (to verify
a software �x) with highly di�erent runtimes. Therefore, a subset of the tool’s jobs was
selected and repeated locally, with a single software version, to get more reliable execution
times. Appendix A.3 contains graphs of runtime over various factors, which are explained
in more detail in the following paragraphs, each with three di�erent functions �tted to
the data: a simple linear function a + bx , a quadratic function a + bx + cx2, and a power
function a + bxc . Each �gure contains two sub�gures, one for the full data and one with
two outlier records removed – see the text in the appendix for details.

The most obvious possible relation is to directly compare the runtime to the number
of Items selected by the user’s query, as shown in �g. A.1. However, it is clear from the
graphs that there is no direct relation between the number of Items and the runtime: in
fact, four of the six resulting functions suggest that execution time shall become negative
if one only supplies enough Items, which is clearly nonsensical. This is not surprising,
because the amount of work that RDF2Graph has to do highly depends on the size of the
Items, as well as the number of Items indirectly selected as the values of Statements on
the original Items (and their size).

Instead, a much more sensible relation is the total amount of input data: the number of
triples which Fuseki serves to RDF2Graph (that is, the number of lines in the N-Triples
�le). As can be seen in �g. A.2, this results in a fairly linear relation, especially if two
outliers are removed, in which case the functions �t the data very well. However, with the
outliers included the �t is much less satisfactory.

Since RDF2Graph heavily relies on type information, another possible factor for execu-
tion time is just the number of wdt:P31 triples in the input, rather than the overall number
of triples. (Recall that “instance of” (P31) is the Wikidata property linking an Item to its
class.) The number of wdt:P31 triples was counted using the GNU AWK snippet found in
listing 9, and the result is shown in �g. A.3: the functions are more linear and �t the data
better, both with and without outliers. However, with outliers included the �t is still not
completely satisfactory.

Alternatively, instead of counting wdt:P31 triples it is also possible to count the distinct
number of classes in the input data. Classes were counted using the GNU AWK snippet
found in listing 10, and the result is shown in �g. A.4: the functions are signi�cantly less
linear now (though this is not visible in the function equations shown in the graphs, due

38

http://www.wikidata.org/entity/P31

5.3. Duration of the Inference Process

to rounding), but they �nally �t the data well without excluding the outliers: in fact, the
graph with outliers has slightly better �ts than the one without outliers.

Two conclusions are possible from this: the execution time could derive linearly from the
number of input triples or wdt:P31 triples, or it could derive nonlinearly from the number
of input classes. The �rst conclusion has no satisfactory explanation for the outliers which
need to be excluded to get good function �ts, whereas the second conclusion requires no
cherry-picking in the data but lacks an explanation for the nonlinear runtime. However,
while more data may be necessary to decide which conclusion is more accurate for larger
input data sets than investigated, most jobs are expected to use smaller input data sets,
where the conclusions do not signi�cantly disagree and a prediction of execution time is
possible with reasonable con�dence.

One might think that these relations are not very useful because they only predict the
duration of the whole process partway through the process. However, all of the possible
predictor variables – number of Items, number of triples, number of wdt:P31 triples,
number of distinct classes – can be determined after the data download step, which is
both the very �rst step in the whole process and also does not take a long time: in the jobs
listed in appendix A.3, the download never takes more than twenty seconds, and for most
jobs it �nishes within about �ve seconds. This means that it takes less than half a minute
to be able to mostly predict the duration of the full job, which can be several hours. This
suggests two possible future improvements for the Wikidata Shape Expressions Inference
tool: to report to the user how long a job is expected to take, as soon as the download
step has �nished; and to reject jobs which resulted in too much data, and are expected to
take far too long to be tolerable. Currently, the tool merely suggests to its users that their
queries should not select more than about �fty Items, but does not implement any kind of
hard limit beyond this suggestion.

39

5. Evaluation

BEGINFILE {

count = 0;

}

$2 == "<http://www.wikidata.org/prop/direct/P31>" {

count++;

}

ENDFILE {

print FILENAME, count

}

Listing 9: GNU AWK script to count the number of wdt:P31 triples in the input

BEGINFILE {

count = 0;

delete classes;

}

$2 == "<http://www.wikidata.org/prop/direct/P31>" {

classes[$3]++

}

ENDFILE {

for (class in classes)

count++;

print FILENAME, count;

}

Listing 10: GNU AWK script to count distinct classes in the input

40

6. Conclusion

The goal of this thesis was to investigate how ShEx schemas can be automatically inferred
for Wikidata, and how useful the resulting schemas are. This was done using an updated
and adapted version of the RDF2Graph software, which was made available to the Wikidata
community through a new web-based tool.

In addition to the changes speci�c to Wikidata, many general improvements to RDF2-
Graph were made over the course of this thesis, making it easier to use and more robust
on any graph. All these changes are available under the same free software license as the
original RDF2Graph, and I hope that some of them will be included in the original source
code repository in the future.

When attempting to validate other Items against the inferred schemas, an unexpected
problem arose: none of the existing ShEx validators were able to reliably perform the
validation without crashing. Several strategies were attempted to remediate this, both in
the schema extraction and in the validators, but this was ultimately unsuccessful.

However, this does not mean the schemas are not useful. Sometimes, problems in the
input data can manifest themselves in the form of unusual predicates or target classes in a
schema, which an attentive reader can notice and trace back to the problematic Items in
the input. And the full, automatically inferred schemas can also form the basis for shorter
schemas manually extracted from the longer ones, which can either be validated directly
(now without problems from the validators) or be further re�ned by users familiar with
the data model, making the automatically inferred schemas a useful basis for manually
curated schemas.

There are plenty of options of further improvements on this work. Section 5.3 already
mentioned how the Wikidata Shape Expressions Inference tool could be improved to notify
the user of the estimated total runtime of a job once the data download step is complete
and to reject jobs which are expected to take too long. Many other improvements could
be made to the user interface as well, such as exposing some more con�guration options
to users of the tool, e. g. the thresholds for schema reduction mentioned in section 3.4.

A signi�cant improvement over the current state would be to make RDF2Graph work
on full Statement nodes instead of just the “truthy” Statements. A full explanation of
full Statement nodes is beyond the scope of this thesis, but in brief, they o�er much
more information about Wikidata Statements in exchange for a slightly more complicated
data format. Using full Statement nodes would allow RDF2Graph to take not just the
Statement’s values but also their Quali�ers and References into account. However, this
would require major changes to the way RDF2Graph looks at the input graph, because
the subject and object of a Statement are no longer linked via a single triple in the full
Statement nodes.

Clearly, it is not a satisfactory �nal state that the inferred schemas cannot be directly
used for validation. It may be possible to �nd optimizations in the validators and/or useful

41

6. Conclusion

criteria for reducing the inferred schemas which would enable direct validation against the
schemas without human intervention to manually extract their most useful parts. There
is also some room for improvement in the simpli�cation step regardless of the ability to
validate against the inferred schemas: sometimes, despite the changes in section 3.2.5, it
still merges mostly-unrelated classes into very abstract base classes, so the criteria on
when to merge or not merge classes could use some improvements. It may also be useful
to apply some of the thresholds for schema reduction (section 3.4) before the simpli�cation
step starts, so that, for instance, a type link of “family name” (Q101352) for the “given
name” (P735) predicate is �ltered out before it is merged with “given name” (Q202444) into
“anthroponym” (Q10856962) in simpli�cation.

The detailed timings for the jobs listed in appendix A.3 show that the ShEx export step
usually takes up about half of the total wall-clock time, and often signi�cantly more than
half of the CPU time. This thesis does not investigate this step more closely except for
its very last part (see section 3.1), but it seems unlikely that this is necessary: it may be
possible to change or rewrite the rest of the ShEx exporter to be much more e�cient.

Overall, this thesis results in a promising new tool for the Wikidata community, which
will hopefully prove useful to several WikiProjects in the future. Further work is anticipated
to make the inferred schemas more useful yet by reducing them to their most important
parts and making them suitable for automatic validation. The improvements to RDF2Graph
that were implemented along the way will hopefully also bene�t other RDF2Graph users
once they are merged into the upstream repository.

42

http://www.wikidata.org/entity/Q101352
http://www.wikidata.org/entity/P735
http://www.wikidata.org/entity/P735
http://www.wikidata.org/entity/Q202444
http://www.wikidata.org/entity/Q10856962

Bibliography

[1] Thomas Baker and Eric Prud’hommeaux. Shape Expressions (ShEx) Primer. W3C
Draft Community Group Report. W3C, July 2017. url: http://shex.io/shex-
primer-20170713/.

[2] Iovka Boneva, Jose G Labra Gayo, and Eric G Prud’hommeaux. “Semantics and
Validation of Shapes Schemas for RDF”. In: ISWC2017 - 16th International semantic
web conference. Vienna, Austria, Oct. 2017. url: https://hal.archives-ouvertes.
fr/hal-01590350.

[3] Jesse CJ van Dam et al. “RDF2Graph a tool to recover, understand and validate
the ontology of an RDF resource”. In: Journal of Biomedical Semantics 6.1 (Oct.
2015), p. 39. issn: 2041-1480. doi: 10 . 1186 / s13326 - 015 - 0038 - 9. url: https :
//doi.org/10.1186/s13326-015-0038-9.

[4] Ramanathan Guha and Dan Brickley. RDF Schema 1.1. W3C Recommendation. W3C,
Feb. 2014. url: http://www.w3.org/TR/2014/REC-rdf-schema-20140225/.

[5] Lucie-Aimée Ka�ee et al. “A Glimpse into Babel: An Analysis of Multilinguality in
Wikidata”. In: Proceedings of the 13th International Symposium on Open Collaboration.
OpenSym ’17. Galway, Ireland: ACM, 2017, 14:1–14:5. isbn: 978-1-4503-5187-4. doi:
10.1145/3125433.3125465. url: http://doi.acm.org/10.1145/3125433.3125465.

[6] Markus Lanthaler, David Wood, and Richard Cyganiak. RDF 1.1 Concepts andAbstract
Syntax. W3C Recommendation. W3C, Feb. 2014. url: http://www.w3.org/TR/2014/
REC-rdf11-concepts-20140225/.

[7] Andrew Lih and Robert Fernandez. Wikidata, a rapidly growing global hub, turns
�ve. Oct. 2017. url: https://blog.wikimedia.org/2017/10/30/wikidata-fifth-
birthday/ (visited on 10/11/2018).

[8] Ashok Malhotra and Paul V. Biron. XML Schema Part 2: Datatypes Second Edition.
W3C Recommendation. http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/.
W3C, Oct. 2004.

[9] Patrick McKenzie. Falsehoods Programmers Believe About Names. June 2010. url:
https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-

about-names/ (visited on 10/09/2018).
[10] Lydia Pintscher. “WikidataCon 2017 – State of the Project”. In: WikidataCon 2017.

2017. url: https://commons.wikimedia.org/wiki/File:WikidataCon_2017-
_State_of_the_Project.pdf.

43

http://shex.io/shex-primer-20170713/
http://shex.io/shex-primer-20170713/
https://hal.archives-ouvertes.fr/hal-01590350
https://hal.archives-ouvertes.fr/hal-01590350
https://doi.org/10.1186/s13326-015-0038-9
https://doi.org/10.1186/s13326-015-0038-9
https://doi.org/10.1186/s13326-015-0038-9
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://doi.org/10.1145/3125433.3125465
http://doi.acm.org/10.1145/3125433.3125465
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://blog.wikimedia.org/2017/10/30/wikidata-fifth-birthday/
https://blog.wikimedia.org/2017/10/30/wikidata-fifth-birthday/
https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
https://commons.wikimedia.org/wiki/File:WikidataCon_2017-_State_of_the_Project.pdf
https://commons.wikimedia.org/wiki/File:WikidataCon_2017-_State_of_the_Project.pdf

Bibliography

[11] Eric Prud’hommeaux, Jose Emilio Labra Gayo, and Harold Solbrig. “Shape Expres-
sions: An RDF Validation and Transformation Language”. In: Proceedings of the 10th
International Conference on Semantic Systems. SEM ’14. Leipzig, Germany: ACM,
2014, pp. 32–40. isbn: 978-1-4503-2927-9. doi: 10.1145/2660517.2660523. url:
http://doi.acm.org/10.1145/2660517.2660523.

[12] schema.org. Extending Schemas. 2011. url: https : / / schema . org / docs / old _
extension.html (visited on 09/26/2018).

[13] Guus Schreiber and Yves Raimond. RDF 1.1 Primer. W3C Note. W3C, June 2014. url:
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/.

[14] Andy Seaborne and Gavin Carothers. RDF 1.1 N-Triples. W3C Recommendation.
http://www.w3.org/TR/2014/REC-n-triples-20140225/. W3C, Feb. 2014.

[15] SPARQL 1.1 Overview. W3C Recommendation. W3C, Mar. 2013. url: http://www.
w3.org/TR/2013/REC-sparql11-overview-20130321/.

[16] Denny Vrandečić. Restricting the World. Feb. 2013. url: https://blog.wikimedia.
de/2013/02/22/restricting-the-world/ (visited on 09/05/2018).

[17] Denny Vrandečić and Markus Krötzsch. “Wikidata: A Free Collaborative Knowl-
edgebase”. In: Commun. ACM 57.10 (Sept. 2014), pp. 78–85. issn: 0001-0782. doi:
10.1145/2629489. url: http://doi.acm.org/10.1145/2629489.

44

https://doi.org/10.1145/2660517.2660523
http://doi.acm.org/10.1145/2660517.2660523
https://schema.org/docs/old_extension.html
https://schema.org/docs/old_extension.html
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
https://blog.wikimedia.de/2013/02/22/restricting-the-world/
https://blog.wikimedia.de/2013/02/22/restricting-the-world/
https://doi.org/10.1145/2629489
http://doi.acm.org/10.1145/2629489

Glossary

Alias additional term by which an Item or Property should be found. 6, 20, 24, 49

CSS Cascading Style Sheets. 29

Description a short clarifying or disambiguating text for an Item or Property. 6, 20, 24, 49

focus node the RDF resource currently being matched against a ShEx shape. 10, 11, 24, 47

HTML Hypertext Markup Language. 17, 20, 29

HTTP Hypertext Transfer Protocol. 27, 29

IMDb Internet Movie Database. 20

IRI Internationalized Resource Identi�er, Unicode-aware generalization of URIs. 3, 4, 10,
17, 46

Item representation of a thing or concept in Wikidata. i, vii, xi, 1, 6–9, 18, 20–22, 24–27,
30–35, 38, 39, 41, 45–47, 49–53, 55

Item ID unique, language-agnostic identi�er of an Item, a consecutive number pre�xed
with the letter “Q”. 6, 29–31, 47

Java programming language for portable applications. 16, 24, 30, 47

JavaScript programming language, originally for the web, can be run outside the browser
using Node.js. 16, 17, 24, 45–47

job one inference process in the Wikidata Shape Expressions Inference tool, launched by
a Wikidata user by providing a SPARQL query selecting exemplary Items. vii, xi,
27–29, 34, 37–39, 41, 50–53

JSON JavaScript Object Notation. 12, 18, 45

JSON-LD JSON for Linked Data, a format to represent RDF graphs. 12, 17

Label the primary term for an Item or Property in a language. 6, 7, 20, 24, 29, 30, 49

Linked Data data that is interlinked, using URIs to identify things and returning data about
those things in standard formats when a URI is dereferenced. 3, 7, 45

45

Glossary

LoC Library of Congress. 20

lower camel case combining multiple words into one by capitalizing the �rst letter of each
word except the �rst word; also known as camelCase, lowerCamelCase, mixedCase.
3

N-Triples simple, line-based syntax for RDF graphs. 4, 18, 38

Node.js platform to run JavaScript programs outside the browser. 24, 30, 45

object the third element of an RDF triple, the “<human>” in “<Alan Turing> <is a>
<human>”. 3, 4, 10, 41, 47

predicate the second element of an RDF triple, the “<is a>” in “<Alan Turing> <is a>
<human>”. 3, 4, 10–12, 18, 20, 24, 25, 32–35, 41, 42, 47

prefix abbreviation of a common part of a resource IRI. 3, 4, 7, 17, 47

Property a possible feature, characteristic or quality of an Item. 6, 7, 20, 35, 45–47, 49

Property ID unique, language-agnostic identi�er of a Property, a consecutive number
pre�xed with the letter “P”. 6, 30

Qualifier an additional Property-value pair further re�ning a Statement. 6, 7, 41, 49

RDF Resource Description Framework. vii, ix, 3–5, 7, 10–12, 18, 20, 21, 45–47

RDF2Graph tool to automatically determine a schema from an RDF graph. i, iii, v, 1, 11–13,
15, 17–27, 30, 34, 38, 41, 42, 46, 47, 53, 54

RDFS RDF Schema. 3, 4

RDFSimpleCon library used by RDF2Graph. 17

Reference a collection of Property-value pairs recording a source for a Statement. 6, 7, 41,
49

resource representation of a thing or concept in RDF, identi�ed by an IRI. 3, 4, 10, 45–47

RfC Request for Comments. 53

schema formal description of the structure of a linked data set; in ShEx, a collection of
shapes. i, ix, xi, 1, 7, 10–12, 17, 18, 20, 21, 24–27, 29–38, 41, 42, 46, 47, 49–52

shape element of a ShEx schema, describing the structure of one node category. xi, 10–12,
17, 18, 20, 24–26, 29–31, 33–35, 45–47, 50–52

ShEx Shape Expressions. i, iii, 1, 7, 10–12, 17–20, 22, 24, 25, 27, 29, 34, 41, 42, 45–47, 49, 54

46

Glossary

shex-java ShEx implementation in Java. 24

shex.js ShEx implementation in JavaScript. 24, 26

ShExC ShEx Compact Syntax. 10, 12–17, 27, 29, 30

simplification optional RDF2Graph step to simplify (usually, shorten) an inferred ShEx
schema by merging references to related classes. 12–16, 18, 20–23, 25, 33–35, 42, 54

Sitelink a link from an Item to a page in a Wikimedia project about the thing or concept
the Item represents. 6, 49, 53

SPARQL SPARQL Protocol and RDF Query Language. 3, 7, 12, 18, 21, 27, 29, 45, 47

Statement a unit of information in Wikidata, consisting of a subject Item, a predicate
Property, and a value (Item ID, quantity, point in time, etc.). 6, 7, 18, 20, 25, 31, 35,
38, 41, 46, 49, 53

subject the �rst element of an RDF triple, the “<Alan Turing>” in “<Alan Turing> <is a>
<human>”. 3, 4, 10, 11, 41, 47

triple a unit of information in RDF, consisting of a subject resource, a predicate resource,
and an object value (resource or literal). vii, 3, 4, 7, 10, 11, 25, 38, 39, 41, 46, 47, 56, 57

triple constraint element of a ShEx shape, restricting triples with the focus node as the
subject and a certain predicate. 10, 11, 47

type link one possible type (datatype or shape) for a predicate in a shape; this term is only
used by RDF2Graph. 12, 23–25, 31, 42

upper camel case combining multiple words into one by capitalizing the �rst letter of
each word, including the �rst word; also known as CamelCase, UpperCamelCase,
PascalCase. 3

URI Uniform Resource Identi�er, usually a URL. 45

URL Uniform Resource Locator. 29, 47

value constraint element of a ShEx triple constraint, restricting the object (value) of a
triple to match a certain datatype or other shape. 10, 12

VIAF Virtual International Authority File. 20

vocabulary set of resources useful in combination, often sharing a common pre�x. 3, 4

W3C World Wide Web Consortium. 3, 10

WDQS Wikidata Query Service. 7, 18, 19, 21, 54

47

Glossary

Wikidata free knowledge base in the Wikimedia movement. i, iii, 1, 6, 7, 17, 18, 20–22,
25–27, 29–35, 38, 41, 42, 45, 47–49

Wikidata Shape Expressions Inference tool web-based tool to make the inference process
available to the Wikidata community. vii, 1, 27, 28, 34, 35, 38, 39, 41, 45, 53

Wikimedia free knowledge movement and community. i, iii, 1, 6, 16, 27, 47, 48, 53

Wikimedia Commons free media repository in the Wikimedia movement. 6, 7, 32

Wikimedia Foundation non-pro�t charitable organization in the Wikimedia movement,
hosting Wikipedia and other sites. 16, 48, 53

Wikimedia Toolforge hosting environment provided by the Wikimedia Foundation. v, 16,
27, 29, 30

Wikipedia free encyclopedia in the Wikimedia movement. 6, 48, 53

Wikiquote free quotation collection in the Wikimedia movement. 6

XSD XML Schema De�nition. 4

48

A. Appendix

A.1. A Note on Orthography

Throughout this thesis, the words “Item”, “Property”, “Label”, “Description”, “Alias”,
“Sitelink”, “Statement”, “Quali�er” and “Reference” are capitalized as proper nouns when
referring to elements of the Wikidata data model, following a common (though not uni-
versal) convention in the Wikidata community, and the word “schema” is pluralized into
“schemas” rather than “schemata” for consistency with other ShEx texts [1, 11].

Both decimal and binary unit pre�xes are used in this thesis, following ISO/IEC 80000:
GB means 109 bytes and GiB means 230 bytes.

A.2. Results of Validation With Depth Limit

The following tables show the results when attempting various validations against inferred
schemas with di�erent depth limits. The meaning of the result column is as follows:

solved validation completed successfully (found a solution)

fail validation completed unsuccessfully (reported violations)

limit the result is directly “depth limit reached”

core the process crashed and dumped core (out-of-memory error)

abort the process was manually killed after a long time with no apparent progress

49

A. Appendix

limit real time CPU time result
- 2m 50 s 8m 51 s core
1 0m 0 s 0m 0 s limit
2 4m 41 s 17m 22 s core
3 3m 57 s 13m 31 s core
4 2m 51 s 9m 1 s core
5 2m 48 s 8m 54 s core
6 2m 50 s 8m 58 s core
7 2m 48 s 8m 41 s core
8 2m 47 s 8m 44 s core
9 2m 48 s 8m 48 s core

10 2m 48 s 8m 53 s core

Table A.1.: Results when validating the Item “Titanic” (Q44578) against the shape for the
class “�lm” (Q11424) from a schema inferred from the set of �lms that won ten
or more Oscars (job #29)

limit real time CPU time result
- 0m 1 s 0m 3 s fail
1 0m 0 s 0m 0 s limit
2 0m 16 s 0m 21 s core
3 0m 1 s 0m 2 s fail
4 0m 1 s 0m 3 s fail
5 0m 1 s 0m 3 s fail
6 0m 1 s 0m 3 s fail
7 0m 1 s 0m 3 s fail
8 0m 1 s 0m 2 s fail

10 0m 1 s 0m 3 s fail

Table A.2.: Results when validating the Item “Douglas Adams” (Q42) against the shape for
the class “human” (Q5) from a schema inferred from the set of �lms that won
ten or more Oscars (job #29)

50

http://www.wikidata.org/entity/Q44578
http://www.wikidata.org/entity/Q11424
https://tools.wmflabs.org/wd-shex-infer/job/29
http://www.wikidata.org/entity/Q42
http://www.wikidata.org/entity/Q5
https://tools.wmflabs.org/wd-shex-infer/job/29

A.2. Results of Validation With Depth Limit

limit real time CPU time result
- 0m 17 s 0m 7 s fail
1 0m 0 s 0m 0 s limit
2 0m 0 s 0m 1 s solved
3 0m 18 s 0m 7 s fail
4 0m 19 s 0m 8 s fail
5 0m 17 s 0m 7 s fail
6 0m 18 s 0m 8 s fail
7 0m 18 s 0m 8 s fail
8 0m 18 s 0m 8 s fail
9 0m 18 s 0m 7 s fail

10 0m 18 s 0m 7 s fail

Table A.3.: Results when validating the Item “Douglas Adams” (Q42) against the shape for
the class “human” (Q5) from a schema inferred from the members of the 13th
Riigikogu (the Estonian parliament; job #30)

limit real time CPU time result
- 2m 50 s 8m 51 s core
1 0m 0 s 0m 0 s limit
2 4m 41 s 17m 22 s core
3 3m 57 s 13m 31 s core
4 2m 51 s 9m 1 s core
5 2m 48 s 8m 54 s core
6 2m 50 s 8m 58 s core
7 2m 48 s 8m 41 s core
8 2m 47 s 8m 44 s core
9 2m 48 s 8m 48 s core

10 2m 48 s 8m 53 s core

Table A.4.: Results when validating the Item “Mailis Reps” (Q449851) against the shape for
the class “human” (Q5) from a schema inferred from the members of the 13th
Riigikogu (job #30)

51

http://www.wikidata.org/entity/Q42
http://www.wikidata.org/entity/Q5
https://tools.wmflabs.org/wd-shex-infer/job/30
http://www.wikidata.org/entity/Q449851
http://www.wikidata.org/entity/Q5
https://tools.wmflabs.org/wd-shex-infer/job/30

A. Appendix

limit real time CPU time result
- 1m 25 s 4m 14 s core
1 0m 1 s 0m 1 s limit
2 0m 1 s 0m 1 s fail
3 0m 55 s 2m 6 s core
4 7m 34 s 13m 54 s core
5 0m 10 s 0m 27 s core
6 0m 30 s 1m 5 s core
7 0m 51 s 1m 59 s core
8 5m 29 s 12m 54 s core
9 0m 9 s 0m 19 s core

10 86m 39 s 153m 35 s abort

Table A.5.: Results when validating the Item “United States of America” (Q30) against the
shape for the class “sovereign state” (Q3624078) from a schema inferred from a
set of Items for bus stops (job #15)

52

http://www.wikidata.org/entity/Q30
http://www.wikidata.org/entity/Q3624078
https://tools.wmflabs.org/wd-shex-infer/job/15

A.3. Job Execution Times

A.3. Job Execution Times

The following charts show the total execution time of the inference process (in seconds)
for various input queries collected from the Wikidata Shape Expressions Inference tool:

• Members of the 30th Riigikogu (the Estonian parliament), limited to 50 Items. Origi-
nally job #30.

• The Federal Chancellors of Germany. Originally job #1.

• Films that won three or more Academy Awards (“Oscars”). Originally job #32, later
repeated as job #34, job #35, job #36. (Some earlier jobs used a similar query with a
limit of ten or �ve Oscars.)

• The human Items with most Sitelinks to other Wikimedia projects (including but
not limited to Wikipedia articles in di�erent language editions), limited to 50 Items.
Originally job #24, later repeated as job #26, job #27.

This is one of the two outliers removed for the �rst version of each chart, since it has
an unusually high execution time compared to the amount of input data. My best
explanation for that is that this is a less “coherent” set of Items: since the selection
criterion (the number of sitelinks) is not directly related to the data, this includes
politicians, authors, religious �gures, scientists, philosophers, celebrities, composers,
and other kinds of people (though none of these are classes in the sense relevant to
RDF2Graph).

• The largest cities in the world by population, limited to 25 Items. Originally job #3.

• Mammal taxa (including species but also genera, families etc.). Limited to 20 000
Items, a limit that was experimentally determined to produce a high but not exorbi-
tant number of triples. Originally job #33.

This is the second of the two outliers removed for the �rst version of each chart, due
to the absurd number of input Items: compare especially the X -axes of �gs. A.1a
and A.1b.

• Programming languages with the highest number of Statements, limited to 50 Items.
Originally job #17, later repeated as job #18.

• Recently edited Items for Requests for Comments (RfCs), limited to 500 Items.
Originally job #21, based on the earlier job #20 (equivalent but with a lower limit),
which in turn was inspired by job #8.

• The member states of the United Nations. Originally job #23.

• The presidents of the United States of America. Originally job #2.

• The chapter organizations of the Wikimedia Foundation. Originally job #5.

53

https://tools.wmflabs.org/wd-shex-infer/job/30
https://tools.wmflabs.org/wd-shex-infer/job/1
https://tools.wmflabs.org/wd-shex-infer/job/32
https://tools.wmflabs.org/wd-shex-infer/job/34
https://tools.wmflabs.org/wd-shex-infer/job/35
https://tools.wmflabs.org/wd-shex-infer/job/36
https://tools.wmflabs.org/wd-shex-infer/job/24
https://tools.wmflabs.org/wd-shex-infer/job/26
https://tools.wmflabs.org/wd-shex-infer/job/27
https://tools.wmflabs.org/wd-shex-infer/job/3
https://tools.wmflabs.org/wd-shex-infer/job/33
https://tools.wmflabs.org/wd-shex-infer/job/17
https://tools.wmflabs.org/wd-shex-infer/job/18
https://tools.wmflabs.org/wd-shex-infer/job/21
https://tools.wmflabs.org/wd-shex-infer/job/20
https://tools.wmflabs.org/wd-shex-infer/job/8
https://tools.wmflabs.org/wd-shex-infer/job/23
https://tools.wmflabs.org/wd-shex-infer/job/2
https://tools.wmflabs.org/wd-shex-infer/job/5

A. Appendix

For each input query, the di�erent steps of the inference process (data download,
initial RDF2Graph run, RDF2Graph simpli�cation, ShEx export) were timed individually,
recording the real (“wall-clock”) time, user CPU time and system CPU time separately.
Only the sum of the real time was used for the charts below, but the full data is available in
the source code repository for this thesis. All the steps were performed on a system with
an Intel® Core™ i7-4771 CPU (3.50GHz clock rate), ca. 25.2GB (23.5GiB) of memory, and
a network connection allowing download rates of up to 23.6MiB/s from WDQS, with no
signi�cant other load of any kind at the time of measurement.

In addition to the graphs shown here, the full data also shows that the simpli�cation
step of the process never takes more than a minute, which means that while the changes
in section 3.3 potentially slowed this step down to some degree, it does not make a big
di�erence for the total execution time, which is mostly dominated by other steps (RDF2-
Graph without simpli�cation and ShEx export) anyways.

54

A.3. Job Execution Times

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

data

+

+

+

+

+

++
+

+

++

+
2777.37 − 0.09x (R2 = 0.04)
2755.58 + 0.11x − 0.00x2 (R2 = −0.06)
819.44 + 1928.06x−0.02 (R2 = −0.10)

(a) Job execution time over number of Items, with outliers

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100 150 200 250 300 350 400 450 500

data

+

+

+

+

+
+

+

++

+
2281.68 + 1.14x (R2 = 0.00)
−304.41 + 54.85x − 0.11x2 (R2 = 0.64)
−7729.31 + 7766.16x0.06 (R2 = −0.02)

(b) Job execution time over number of Items, without outliers

Figure A.1.: Job execution time over number of Items selected by the query

55

A. Appendix

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50000 100000 150000 200000 250000 300000

data

+

+

+

+

+

++
+

+

++

+
1.01 + 0.03x (R2 = 0.63)
929.70 + 0.01x + 0.00x2 (R2 = 0.64)
855.77 + 0.00x1.18 (R2 = 0.63)

(a) Job execution time over number of triples, with outliers

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50000 100000 150000 200000 250000 300000

data

+

+

+

+

+
+

+

++

+
430.17 + 0.03x (R2 = 0.97)
565.01 + 0.02x + 0.00x2 (R2 = 0.97)
498.41 + 0.02x1.04 (R2 = 0.96)

(b) Job execution time over number of triples, without outliers

Figure A.2.: Job execution time over number of triples in the input data set

56

A.3. Job Execution Times

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

data

+

+

+

+

+

++
+

+

++

+
443.48 + 0.11x (R2 = 0.81)
383.59 + 0.11x − 0.00x2 (R2 = 0.79)
73.51 + 0.53x0.86 (R2 = 0.79)

(a) Job execution time over number of wdt:P31 triples, with outliers

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

data

+

+

+

+

+
+

+

++

+
398.25 + 0.11x (R2 = 0.99)
311.20 + 0.12x − 0.00x2 (R2 = 0.99)
144.90 + 0.41x0.88 (R2 = 0.99)

(b) Job execution time over number of wdt:P31 triples, without outliers

Figure A.3.: Job execution time over number of wdt:P31 triples in the input data set

57

A. Appendix

−1000
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

0 500 1000 1500 2000 2500 3000 3500

data

+

+

+

+

+

++
+

+

++

+
−1146.70 + 2.71x (R2 = 0.93)
304.51 + 0.19x + 0.00x2 (R2 = 0.97)
443.54 + 0.00x2.03 (R2 = 0.97)

(a) Job execution time over number of classes, with outliers

−1000
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

0 500 1000 1500 2000 2500 3000 3500

data

+

+

+

+

+
+

+

++

+
−1073.33 + 2.67x (R2 = 0.91)
376.46 + 0.09x + 0.00x2 (R2 = 0.96)
572.65 + 0.00x2.21 (R2 = 0.96)

(b) Job execution time over number of classes, without outliers

Figure A.4.: Job execution time over number of distinct classes in the input data set

58

	Abstract
	Zusammenfassung
	Introduction
	Background
	RDF
	Wikidata
	Shape Expressions
	RDF2Graph
	Wikimedia Toolforge

	Applying RDF2Graph to Wikidata
	General RDF2Graph Updates
	Wikidata Support
	Overall process
	Type predicates
	Data reduction
	Full type hierarchy
	Simplification

	Support for Cyclic Type Hierarchies
	GetAllChildren
	Counting instances
	Simplification steps 3 and 4
	Node distances
	Parent check

	Schema Reduction
	Depth Limits in Validation

	The Wikidata Shape Expressions Inference Tool
	General Design and Implementation
	Schema Reading Utilities
	Wikimedia Toolforge Support

	Evaluation
	Schema Quality
	Manual Schema Extraction
	Duration of the Inference Process

	Conclusion
	Bibliography
	Appendix
	A Note on Orthography
	Results of Validation With Depth Limit
	Job Execution Times

